1.LAMOST望远镜的工程

2.“神舟”号的资料

3.避雷器实验室在哪里?

4.气象卫星的用途和作用(自述)

5.parameters这词什么意思?

6.土壤中氡浓度的测定

7.中国有什么特殊天气?(不要找寒潮,台风,沙尘暴,梅雨等地理书有的)

气象参数包括哪些测定指标_气象参数的测定温空气温度的测定实验报告

许多企业要上一个项目,向商证咨询的时候,思绪万千,热情洋溢,各种点种,想法都能脱口而出,不过,一旦要落笔,向申报项目,或向投资人路演介绍,需要做一份可行性研究报告,或者一份商业书的时候,就无从下手,感觉都不得要领。或者是在网络上面找一篇模版,到处摘抄堆彻词句,或者弄一堆艰涩难懂的专业术语,绕来绕去,不知所云。\x0d\\x0d\事实上,撰写项目可行性研究报告,也有一定的章法可循,商证不想介绍一大堆理论与背景,直接说明其中的要领,有不对的地方,遵循着交流使人进步的原则,毫不保留的把我自己的一些心得写出来,供大家讨论商榷,欢迎行家指正。\x0d\所谓好的项目可行性研究报告,一定要立意清楚,有理有据。\x0d\1)研究受众,也就是你的报告汇报对像是谁?他们想要知道什么,了解什么。比如,商证向国家部委的项目可行性研究报告,最重要的得说明该项目所处的技术水平,对国民经济的促进作用,保障措施如何。这些内容,与对投资人介绍的报告就大不相同。\x0d\2)抓住文章的重点,一份可行性研究报告,哪一块才是重点?有没有永恒的重点?这个需要根据报告的用途进行区分,有些是为了项目推荐,有些是为了宣传功绩,有些是为了招商引资,目的不同,重点则不同。打个比方,某个事个业单位,要做一份道路车流人流分时段控制的可行性研究报告,是向上级机关论证可行性,以及对社会的示范促进作用。那么报告重点是要讲实施前后的社会效益对比,以及实施的可行性。这些与申报项目资金的报告撰写行文方式又不同。\x0d\3)形式一致,内容全面,因为可行性研究报告,根据细化程度,内容可长可短,除了重点内容要突出之外,其它各方面的内容要全面,都要有交待,一方面表示项目撰写人思路开阔,考虑周全,另一方面也说明研究深入。\x0d\商证认为,项目可行性研究报告,撰写是有难度,但更难的是用心。

LAMOST望远镜的工程

空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。

空气动力学的发展简史

最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。

1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。

到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。

航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。

约在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。

边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机冀上的压力分布和表面摩擦阻力。

近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。

在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。

小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。

英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。

在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。

远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。

由于在高温条件下全引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。

空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。

20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。

除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。

空气动力学的研究内容

通常所说的空气动力学研究内容是飞机,导弹等飞行器在名种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:

首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。

其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

除了上述分类以外,空气动力学中还有一些边缘性的分支学科。例如稀薄气体动力学、高温气体动力学等。

在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、举力线理论、举力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。

在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动、锥型流,等等。主要的理论处理方法有超声速小扰动理论、特征线法和高速边界层理论等。跨声速无粘流动可分外流和内流两大部分,流动变化复杂,流动的控制方程为非线性混合型偏微分方程,从理论上求解困难较大。

高超声速流动的主要特点是高马赫数和大能量,在高超声速流动中,真实气体效应和激波与边界层相互干扰问题变得比较重要。高超声速流动分无粘流动和高超声速粘性流两大方面。

工业空气动力学主要研究在大气边界层中,风同各种结构物和人类活动间的相互作用,以及大气边界层内风的特性、风对建筑物的作用、风引起的质量迁移、风对运输车辆的作用和风能利用,以及低层大气的流动特性和各种颗粒物在大气中的扩散规律,特别是端流扩散的规律,等等。

空气动力学的研究方法

空气动力学的研究,分理论和实验两个方面。理论和实验研究两者彼此密切结合,相辅相成。理论研究所依据的一般原理有:运动学方面,遵循质量守恒定律;动力学方面,遵循牛顿第二定律;能量转换和传递方面,遵循能量守恒定律;热力学方面,遵循热力学第一和第二定律;介质属性方面,遵循相应的气体状态方程和粘性、导热性的变化规律,等等。

实验研究则是借助实验设备或装置,观察和记录各种流动现象,测量气流同物体的相互作用,发现新的物理特点并从中找出规律性的结果。由于近代高速电子计算机的迅速发展,数值计算在研究复杂流动和受力计算方面起着重要作用,高速电子计算机在实验研究中的作用也日益增大。因此,理论研究、实验研究、数值计算三方面的紧密结合是近代空气动力学研究的主要特征。

空气动力学研究的过程一般是:通过实验和观察,对流动现象和机理进行分析,提出合理的力学模型,根据上述几个方面的物理定律,提出描述流动的基本方程和定解条件;然后根据实验结果,再进一步检验理论分析或数值结果的正确性和适用范围,并提出进一步深入进行实验或理论研究的问题。如此不断反复、广泛而深入地揭示空气动力学问题的本质。

20世纪70年代以来,空气动力学发展较为活跃的领域是湍流、边界层过渡、激波与边界层相互干扰、跨声速流动、涡旋和分离流动、多相流、数值计算和实验测试技术等等。此外,工业空气动力学、环境空气动力学,以及考虑有物理化学变化的气体动力学也有很大的发展。

“神舟”号的资料

1992年4-5月,中国天文学会和中科院数理学部向全国天文界征集下一阶段天文重大观测设备建议。以王绶琯、苏定强院士为首的研究集体针对国内外现状和发展机遇,提出了建造LAMOST的建议,得到了天文界广泛的支持。LAMOST项目的实施,将使我国天文学在大规模光学光谱观测和大视场天文学研究上,跻身于国际领先行列。

1995年1-2月,国家科委组织对各学科科学工程的建议项目进行评议,LAMOST位居前列。

1996年6月,国家计委、国家科委组织两院院士对国家重大科学工程进行评审,LAMOST位居前列。

1996年7月,国家科技领导小组启动国家重大科学工程。

19年4月,国家计委批复LAMOST项目建议书。

19年8月29日,国家计委批复LAMOST项目可行性研究报告,标志着LAMOST正式立项。

1999年2月12日,LAMOST项目初步设计报告编制完成。

1999年6月9日,国家计委委托中科院批复了LAMOST项目初步设计与概算。

2000年2月20日,数据处理和研究中心工程开工。

2001年8月,LAMOST项目开工报告获国家计委批准,项目进入正式施工阶段。

2002年12月3日和4日晚,1比1室外主动光学试验闭环校正光学系统的像差精度研究获得初步成功,在对角径为1.1米、厚为25毫米的正六角形试验子镜上的偏轴非球面的精度达到均方根值42纳米。这是针对LAMOST最重要的关键技术而进行的研究。

2003年1月22日,在南京天光所TCS总控开发实验室内进行了LAMOST的“OCS和TCS”0-级联调系统方案研讨,最终确认了TCS研制组的“关于实现0-级OCS和TCS系统联调的技术草案”方案,并通过实测实现了LAMOST南京合肥两地系统联调的第一个成功的演示。

2003年7月,LAMOST海量光谱的自动识别与分析系统,经中科院国家天文台天文学家和自动化所技术专家的联合攻关,已完成技术理论研究工作,LAMOST最重要的实用系统的框架设计方案由此确定。LAMOST建成后将一次观测4000个天体,支撑起一个庞大的天文观测数据库,供天文学家在此基础上开展前沿研究。自动化领域的专家协助天文学家寻找有效的对天体光谱进行自动识别分类和参数测量的算法,开发出可供LAMOST使用的光谱自动识别分类的软件包,已成功建立了各种类型的光谱库。

2003年10月13日,中国科学技术大学近代物理系OCS研究组承担的LAMOST-1级观测控制系统(OCS-1.20)和1级巡天战略系统(SSS-1.00)通过验收。来自LAMOST工程指挥部、国家天文台、南京天文光学技术研究所和中国科学技术大学的16名专家和教授组成验收专家组。

2003年10月14日,由中国科学技术大学承担的LAMOST“光纤定位多单元中间试验系统”通过了专家验收,试验系统达到了合同要求,试验的成功表明LAMOST光纤定位系统研制取得突破性进展。光纤定位系统是LAMOST两个关键技术之一,它要求把4000根光纤在较短的时间内精确对准各自的观测目标。国外用较为成熟的光纤定位技术,包括固定的定位孔、磁扣式等,由于LAMOST焦面的直径较大(达1.75米),光纤数目较多达4000根(国外目前达到实用的最多只有640根),现有方案很难直接运用。中国科学技术大学邢晓正教授提出的“并行可控式光纤定位”方案最终被用。该方案定位速度快、精度高,可以实时补偿温度和大气的较差折射等引起的误差,光纤与焦面法线偏角小,直接对准星象,光能损失小,观测上无盲区,四千个可控式单元由相同的构件组成,加工成本低,可靠性高,运行费用低。此次中国科学技术大学研制的19个单元样机经1年半的成功运行后顺利通过验收,表明这项关键技术已取得了突破性进展。

2004年1月7日,LAMOST的球面主镜部分的子镜室样机实验顺利完成。LAMOST的主镜是用拼接镜面主动光学技术的大型薄镜面,单块六角形子镜的对角径为1.1米,厚度只有75毫米。自2001年开始方案设计以来,南京天光所经历了结构优化分析、细节设计、数次原理和工艺审核、外协加工、部分零件修改、铝制代子镜测试和玻璃子镜测试数个阶段,最终获得初步结论。球面主镜在国内率先用了一种倒挂式的摇杆机构(WHIFFLETREE)和中孔薄膜机构分别解决了子镜的轴向和侧向支撑问题,所有的机构都隐藏在子镜背后,结构紧凑,避免了拼接镜面中支撑系统可能的干涉问题。

2004年6月15日,LAMOST观测楼在国家天文台兴隆观测站开工建设。出席观测楼奠基仪式的有中科院副院长、科技部基础司、河北省科技厅、承德市、兴隆县、国家天文台和施工单位的有关领导、LAMOST项目管理委员会和科技委部分成员、以及项目工程指挥部主要成员。

2004年9月,4000根光纤焦面定位系统的设计方案通过评审,并开始加工制造。

2004年11月25日,中国科学技术大学近代物理系承担的LAMOST观测控制系统(OCS-2.10)和巡天战略系统(SSS-1.10)通过了验收。评审专家组由工程指挥部、中国科技大学、国家天文台、南京天文光学技术所18名专家学者组成。

2004年12月30日,南京天文光学技术所承担的LAMOST关键技术预研究项目——“大口径主动光学实验望远镜装置”(左图)在南京通过验收和成果鉴定。专家认为:该装置是国际上第一架用主动光学技术的反射施密特望远镜,经现场测试获得了高精度测试结果。该装置用六角形薄镜面为主动光学中的可变形镜,发展了相关的主动校正力的定标计算方法,用主动光学开环控制技术成功地在薄镜面上产生偏轴非球面,补偿了光学系统的像差,解决了大口径、大视场反射施密特望远镜的关键技术之一,属国际首创。该装置的实验成功显示了我国已掌握大口径薄镜面主动光学的关键技术,开创了天文光学中大口径、大视场观测的新局面,具有重大的天文和国防等应用前景。

2005年1月14日,LAMOST项目委托俄罗斯Lytkarino光学玻璃厂(JSC LZOS)加工的第一批共4块MB子镜安全运抵南京天文光学技术所(2004年11月在俄通过验收)。LAMOST的球面主镜(简称MB)尺寸为6.67米 × 6.05米,曲率半径40米,由37块对角线长1.1米、厚度为75毫米的六角形球面子镜组成,加工难度高。本次验收的4块子镜的技术指标完全满足了LAMOST项目的要求。2005年1月18日,LAMOST工程指挥部和中国科技大学在合肥签订了“LAMOST焦面光纤定位装置研制合同”。

2005年4月15日,LAMOST低分辨率光谱仪样机通过了专家评估。LAMOST需配置16台中低分辨率多目标光纤光谱仪和一台高分辨率阶梯光栅光谱仪,低分辨率光谱仪样机已完成。专家组听取了样机研制报告、测试报告,并对现场进行了考察。专家组认为,光谱仪的主要指标如光谱分辨率等,检测用的CCD所能覆盖的光谱范围内已达到设计指标要求并与光学计算结果符合。限于实验条件,有些性能指标尚无法检测,下一步将完善检测设备,以保证正样光谱仪有完备的检测结果。

2005年4月20日,南京天文光学技术研究所承担的院设备更新专项资金支持项目——3.6米环抛机在南京通过了专家组的现场验收。3.6米环抛机为LAMOST施密特改正镜研制需要而配置,已完成试运行。专家组经过严密的验收程序后,一致认为:3.6米环抛机各项定量定性指标均已达到,运行正常,可以满足LAMOST项目Ma子镜光学的预定目标的要求,同意验收。2005年5月18日,LAMOST地平式机架在南京完成机电初联调,经过对跟踪精度和指向重复定位精度的初步检测,各项指标均达到设计要求。这意味着LAMOST地平式机架已达到分拆启运前的要求,是LAMOST研制过程中的又一个里程碑,2005年5月30日-6月2日,“LAMOST项目国际中期评估”在南京和北京举行。来自英国、美国、澳大利亚、法国、德国的9位国际知名天文仪器专家和天文学家担任评委。专家们实地考察了LAMOST的8米MA地平式机架、MB桁架的装调现场、主动光学室外实验望远镜装置、主动光学实验室、力促动器实验室、多目标光纤光谱仪样机、MA/MB子镜样机、摩擦驱动试验、MB子镜及正在该所磨制的MA子镜,并针对会议提交的四个报告和工程建设期间存在的问题和难题进行了讨论。

2005年6月3-4日,在北京召开的“南极DOME C/A大视场巡天望远镜研讨会”上。国外天文学家提议在南极建造一台更大口径的LAMOST望远镜。与国家天文台的LAMOST遥相呼应,对整个天空进行完整的深度光谱观测。

2005年6月16日,LAMOST委托南京天文光学技术所研制的MA子镜第一批(共4块)在南京顺利通过验收。LAMOST项目的反射式施密特改正板(简称MA镜)长5.7米,宽4.4米,由24块MA子镜拼接而成。子镜的外形为正六边形,对角线尺寸为1.1米,厚度为25毫米,其特点是口径大,厚度小,面形精度要求高。验收组听取了研制报告和测试报告并进行了现场抽检,验收组认为:4块子镜均已达到合同的技术要求,其工艺流程合理,在大口径高精度薄平面光学镜面的研制方面已达到国内领先水平。

2005年9月,LAMOST与美国SDSS签订了LAMOST参加“SLOAN数字巡天-II”工作的备忘录。2005年9月20日,LAMOST首件大型设备MA机架从南京天文光学技术研究所启运,运往国家天文台兴隆观测站,标志着LAMOST的研制取得了阶段性的成果,这是LAMOST工程建设具有里程碑意义的重大。

2005年11月18日,中国科学技术大学近代物理系承担的LAMOST子课题观测控制系统(OCS-2.20)和观测战略系统SSS-2.00通过了验收。专家评审组由LAMOST工程指挥部、中国科学技术大学、国家天文台、南京天文光学技术研究所的21名专家组成。

2005年12月24日,组成LAMOST本体的反射施密特改正镜(MA)机架、球面主镜(MB)桁架和焦面机构三大部套的安装在兴隆观测站顺利完成,各项指标均达到设计要求,标志着LAMOST项目全面进入现场安装调试阶段。

2006年4月12日,三块对角径1.1米六角形球面MB子镜在南京天文光学技术研究所拼接成功,是LAMOST工程的又一重大进展。在世界上首次应用了在同一块大镜面上同时应用薄镜面(可变形镜面)主动光学技术和拼接镜面主动光学技术,还首次在一个光学系统中同时用了两块大的拼接镜面。球面主镜的拼接是这个关键技术的重要组成部分,也是使项目造价大为降低的关键之一。进而言之,拼接镜面主动光学技术也是未来巨型地面光学红外望远镜的主要技术之一,掌握此技术意义重大。

2006年11月,委托俄罗斯研制的40块MB子镜(其中包括3块备用子镜)全部通过验收。2006年12月27日,南京天文光学技术所承担并自行研制的LAMOST 30块MA子镜(其中包括6块备用子镜)顺利通过验收(右图)。验收专家组听取了研制报告和验收测试报告,审阅了相关技术资料并进行了现场考察。专家组认为:30块MA子镜面的技术指标均满足合同要求,同意通过验收,这是LAMOST建设过程中又一个重要里程碑。该项工作在大口径高精度非圆形超薄平面研制方面处国内领先,并达到国际先进水平,对我国研制未来巨型望远镜和其他大型光学工程有重要意义。

2007年2月4日,LAMOST首批三块1.1米六角形主镜子镜在国家天文台兴隆观测站顺利安装成功。LAMOST主镜的安装难度很大,经过反复的实战模拟准备,终于安全、顺利地完成首批三块子镜的安装,标志着LAMOST项目顺利进入了光学装调阶段。

2007年2月27日,LAMOST“焦面光纤定位系统(小系统)验收会”在合肥中国科学技术大学举行。来自国家天文台、上海天文台、南京天文光学技术研究所、中国科学技术大学等单位的验收专家和有关领导出席了验收会。焦面光纤定位小系统包括直径600mm的小焦面板、250个光纤定位单元、250单元的驱动控制电路、定位控制软件和定位精度检测系统。与会专家听取了研制报告,检测组检查了项目组提供的详细测试数据,验收组经现场考察和检查。验收组认为,小焦面板、光纤单元、控制系统软硬件和光纤位置检测系统达到了技术要求,该小系统可以通过实验室验收并在兴隆观测站现场安装。

2007年2月28日,LAMOST的地平式机架及焦面机构的机电联调顺利完成,实测技术指标均优于设计指标。地平式机架是LAMOST最大最复杂的精密机械系统,也是我国目前尺寸最大、精度要求最高的光学望远镜跟踪机架。焦面机构用于支撑直径1.8米、安装有4000根光纤及其定位机构的焦面板,并起着在观测过程中消除像场旋转、精确定位焦面板及精确跟踪星像的重要作用。由于其需要场旋转、姿态调整、调焦、侧移的空间五维精确运动,技术难度很大。机电联调的完成是LAMOST又一个阶段性成果,为光机电联调和小系统按时出光奠定了扎实的基础。

2007年5月28日凌晨3点,正在调试中的LAMOST喜获首条天体光谱。随着调试的进展,随后的两天LAMOST已不断地获得越来越多的天体光谱,标志着其各个子系统(望远镜光学和主动光学、跟踪控制、光纤、光谱仪)已全部联通并达到要求的技术指标。LAMOST正处在“小系统”联调阶段,“小系统”调通后,将在此基础上扩展镜面子镜数至24/37块,光纤数至4000根和光谱仪数量至16台。

2007年6月29日,“LAMOST小系统验收会”在北京召开。LAMOST“小系统”包括3米口径的镜面,250根光纤和一台光谱仪,以及LAMOST完整的机架、跟踪和控制系统。中科院基础局组织了国内天文、天文仪器、光学、精密机械、电子及管理科学等领域的著名专家学者20余人对LAMOST的“小系统”进行了全面的综合评估。测试专家组于6月18日和6月28日到兴隆观测基地进行了现场测试和考察。验收专家组听取了研制报告、测试专家组的测试报告,审阅了相关技术资料。专家组认为:“LAMOST小系统的光学质量完全达到了指标要求,多目标光纤光谱系统基本达到预定目标,望远镜、光纤、光谱仪和CCD相机所组成的观测系统,集成情况良好。LAMOST小系统的研制成功证明项目总体方案是正确的,技术和工艺是可行的。同意通过验收。”LAMOST小系统的成功是该项工程建设中的一个重要里程碑,标志着项目建设的所有关键技术难点已被攻克,尤其是国际领先的薄镜面及拼接镜面的主动光学技术和并行可控式光纤两项新技术的成功,为项目建设的全面成功铺平了道路。

2007年8月,南京天光所订购的1.6米箱式真空镀膜机经设备调试和工艺实验获取了可靠的工艺参数,并为LAMOST项目MA、MB子镜添置了专用工装,顺利完成LAMOST三块MA子镜和一块MB子镜的镀膜,经检测,这四块子镜膜层质量优良,膜层的机械强度及反射率指标均达到了设计要求。

2007年12月中旬,中科院上海天文台天体测量团组承担的“LAMOST天体测量支持系统”完成了在LAMOST小系统上的调试,%以上的有效光纤得到了目标的星光光谱,为下一步科学目标的试验观测打下基础。天体测量支持系统负责为LAMOST望远镜的各运动部分提供实时的指向参数和运动参数,包括施密特改正镜法线的瞬时指向参数、焦面的瞬时位置、姿态和旋转角参数、每个光纤单元的定位参数。由于LAMOST视场大(20平方度)、焦距长(20米)、接收单元离散分布、工作原理特殊,对天体测量支持系统提出很高的精度要求(焦面上允许定位误差50微米)。

2007年底,LAMOST光纤定位系统的可重复的光谱出光率平均达到%,并安装调试完成约三分之二的光学镜面(24块主镜和16块施密特改正镜的子镜)和8台多目标光纤光谱仪,使项目在2008年全面竣工有了保证,也为科学上的试观测打下了很好的基础。

2008年1月,为了推动LAMOST有关科学研究的开展,组织国内外天文学家对LAMOST观测项目的申请和评估工作,优选观测等,国家天文台成立了“LAMOST巡天观测遴选和设计委员会”。该委员会发布了“LAMOST数据政策(征求意见稿)”,以推动国内外天文学家利用LAMOST观测数据进行科学研究的积极性。征求意见稿已向国内天文界公开发布,并在LAMOST网站上公布。委员会还向国内各天文台及其他高校有关的天文学家发出征求LAMOST科学观测和科研题目的第一号通知,征求课题的截止期为2008年4月底,5月份将对第一批提出的观测进行评审。在评审基础上优选课题,组织相应的工作小组,以推动LAMOST科学研究的全面准备工作。

2008年3月,LAMOST拆除了小系统用的小焦面板,对LAMOST焦面板进行了安装和调试。为了保证产品的质量,工程指挥部先后组织人员对中国科技大学研制的焦面板机械加工进行了出厂前和现场安装后的测试和验收,结果表明焦面板的机械加工以及安装和调试均符合设计要求。

2008年4月4日,美国《科学》杂志(Page 34-35,VOL 320)报道了LAMOST项目的最新进展。文章题为“中国的LAMOST在准备最后的测试”,对LAMOST的技术创新点、建设过程和近况、以及三大科学目标进行了详细介绍。链接:原文

2008年4月10日,LAMOST顺利完成2/3镜面装调目标。16块MA子镜(共24块)和24块MB子镜(共37块)及其支撑系统的现场装调已经完成。24块MB子镜共球心测试结果为80%光能量集中在0.4角秒直径的圆内,达到设计技术要求;通过自准直校正测试望远镜光学系统的成像质量已达到80%光能量集中在1.2角秒直径的圆内(设计指标为80%光能量集中在2.0角秒直径的圆内);测试结果充分表明:望远镜光学系统的成像质量已优于设计指标。配备的16台光谱仪已有8台完成了光、机、电联调。至此,光谱仪的研制任务完成过半,实现了预定目标。望远镜导星跟踪的综合精度可达0.42角秒,光纤定位系统的可重复的光谱出光率平均达到%,保证了整个系统稳定全面地出光,为下一步科学目标的试验观测打下了坚实基础。

2008年5月13日,“天体测量支持系统在LAMOST小系统中的应用”验收会在上海天文台召开,验收组由南京光学天文仪器研究所、国家天文台、中国科技大学的专家组成,南京光学天文仪器研究所所长崔向群研究员担任验收组组长。在听取了上海天文台天体测量研究团组科研人员的总结报告后,与会专家对天体测量支持系统在LAMOST工程小系统调试中的工作进行了评估。该支持系统负责为LAMOST望远镜的各运动部分提供实时的指向参数和运动参数及其导星修正量,主要包括施密特改正镜法线的瞬时指向参数、焦面的瞬时位置、姿态和旋转角参数、每个光纤单元的定位参数。在LAMOST小系统的调试过程中,天体测量支持系统与光学、机械、电控、光纤定位、光谱仪等各子系统密切配合,在天气情况和仪器状态良好的情况下,望远镜持续1小时导星和跟踪的综合波动均方差达到0”.42,光谱有效出光率达到%以上,并可重复,为下一步LAMOST大系统的调试打下了坚实基础。验收组认为支持系统的设计方案行之有效,其中的硬件部分和软件部分的性能都达到了所要求的指标,能够正常支持观测过程的实现,并在小系统整体调试中发挥了重要的作用,同意通过验收。

2008年6月21日,LAMOST在兴隆观测站完成了24块反射施密特改正镜(MA)、37块球面主镜(MB)的安装。这是LAMOST项目研制过程中的一个重要里程碑,标志着LAMOST项目全面进入最后的现场装调阶段。

2008年9月27日夜,LAMOST望远镜在调试中一次观测得到1000余条天体的光谱。截止到发稿,在每次调试观测中,LAMOST都不断地获得1000多至2000多天体的光谱。用于调试观测的天体一般是亮于17等,光谱是在无云观测夜曝光5分钟后获得的。与国际上迄今最多一次观测只能得到600多条天体的光谱相比,LAMOST已经成为世界上光谱观测获取率最高的望远镜。

2008年10月16日,LAMOST落成典礼在国家天文台兴隆观测基地举行。LAMOST于2008年8月底完成了全部硬件安装,并开始进行试观测。望远镜的各项指标均已经达到甚至超过设计要求,在调试过程中单次观测可同时获得3000多条天体光谱的能力。LAMOST已成为我国最大的光学望远镜、世界上最大口径的大视场望远镜,也是世界上光谱获取率最高的望远镜。它的研制成功使我国的大规模光谱观测处于世界领先地位。

2008年12月15日-18日,中科院基础科学局和财务局组织专家对LAMOST进行了现场测试(项目的设备部分—望远镜和仪器)。12月19日鉴定验收专家组进行了工艺鉴定验收。专家组认为:LAMOST突破了光学望远镜大口径与大视场不可兼得的困难,在主镜和改正镜上同时实现主动光学技术,把几十个薄镜面,实时调整,完美拼合为一体;并在视场上安装4000根光纤,能同时测定4000个目标的光谱。LAMOST是国际上口径最大、视场最宽、光谱获取率最高的大型施密特望远镜,为国际同行赞许。在研制过程中,有多项技术创新,为今后大望远镜研制奠定坚实基础。

2009年6月4日, LAMOST在中国科学院国家天文台兴隆观测基地顺利

通过国家发展改革委组织的国家竣工验收。验收委员会由国家发展改革委、科技部、国家档案局、基金委、河北省、中科院等有关部门和相关领域的专家组成。国家发展改革委副主任张晓强,中国科学院常务副院长、LAMOST工程建设领导小组组长任主任委员出席了验收仪式。

为了推动国家重大科学工程LAMOST 竣工后的工程调试与科学试观测工作的顺利开展,2010 年5 月31 日,中国科学院国家天文台正式成立LAMOST 运行和发展中心(现已更名为“郭守敬望远镜运行和发展中心”,以下简称“中心”),下设办公室、观测运行部、技术维护与发展部以及巡天与数据部。聘任赵刚为中心主任、赵永恒为中心常务副主任,崔向群为中心总工程师,褚耀泉、李国平为中心副主任。

2010年12月15日,郭守敬望远镜(LAMOST)运行和发展中心对郭守敬望远镜(LAMOST)镀膜机进行了兴隆现场安装调试验收。LAMOST镀膜机包括一台1.6米箱式镀膜机和一台1.4米专用镀膜机,由北仪创新真空技术有限公司承制。两台设备分别于2008年10月和2009年3月进行了生产现场验收。截至2010年12月31日,技术维护与发展部光学维护小组已经完成了5块MA 子镜的镀膜。经检测,镀膜后的镜面反射率达到92%,较镀膜前提高了约10%。

2010年12月17日至18日,郭守敬望远镜(LAMOST)软件国际评估会在国家天文台召开。评估会的成功召开,是郭守敬望远镜(LAMOST)展开正式巡天前的重要环节,为巡天所需的星表准备、观测控制和数据处理等工作提供了软件方面的保证。

为了更好地为LAMOST提供观测所需的天文与气象环境信息,2011年5月底,LAMOST环境监测室仪器安装调试到位,正式投入使用。

2011年5月,LAMOST光纤定位改进工作取得重要进展,90%的光纤定位精度在1角秒之内,LAMOST整体的光学效率在蓝端为5%左右、红端在10%左右,基本达到光谱巡天观测的要求。

避雷器实验室在哪里?

神舟六号载人飞船,是中国神舟号飞船系列之一。“神舟六号”与“神舟五号”在外

形上没有差别,仍为推进舱、返回舱、轨道舱的三舱结构,重量基本保持在8吨左右

,用长征二号F型运载火箭进行发射。它是中国第二艘搭载太空人的飞船,也是中国

第一艘执行“多人多天”任务的载人飞船。

宇航员

执行任务宇航员

费俊龙,指挥长

聂海胜,操作手

这是两位太空人第一次进行太空任务飞行。聂海胜10月13日在太空庆祝他的41岁农历

生日。

后备宇航员

第一梯队:刘伯明、景海鹏

第二梯队:翟志刚、吴杰

各分系统负责人

航天员系统总指挥、总设计师:陈善广

飞船应用系统总指挥、总设计师:顾逸东

飞船系统总指挥:尚志,总设计师:张柏楠

火箭系统总指挥:刘宇,总设计师:刘竹生

发射场系统总指挥:张育林,总设计师:陆晋荣

测控通信系统总指挥:董德义,总设计师:于志坚

着陆场系统总指挥:隋起胜,总设计师:侯鹰

时间轴

以下时间使用协调世界时(UTC)。

10月11日

22:15—22:17 太空人进入飞船

22:53 神舟六号返回舱舱门关闭

10月12日

00:27 火箭发射塔操作支架完全打开

01:00:00 长征二号F型火箭点火

01:00:03.583 神舟六号发射

01:02:03(点火后第120秒) 火箭抛弃逃逸塔

01:02:19(点火后第136秒) 火箭助推器分离

01:02:42(点火后第159秒) 火箭一二级分离,一级火箭坠落

01:03:23(点火后第200秒) 整流罩在110公里高度脱离

01:09:43(点火后第583秒) 飞船与火箭在高度约200公里处分离成功

01:09:52 神舟六号进入预定轨道

07:56 神舟六号飞船实施变轨

10月13日

02:10 航天员进行在轨抗干扰试验

18:21 远望一号、远望二号和远望三号所处海域海况恶化

21:56 神舟六号飞船进行变轨后的首次轨道维持

10月15日

08:29—08:31 太空人与中华人民共和国对话。

10月16日

18:40 神舟六号围绕地球进入第76圈飞行,在青岛站测控区上空

18:44 神舟六号返回指令解锁

19:10 北京航天飞控中心调度员宣布,返回段跟踪进入30分钟准备

19:17 神舟六号正在南太平洋上空飞行

19:18 推进舱太阳帆板垂直归零

19:42 远望三号测量船捕获到神舟六号信号

19:43—19:48 远望三号测量船对神舟六号实施了姿态调整、轨道舱与返回航分离、

制动点火等一系列关键控制,神舟六号顺利进入预定返回轨道

19:43 远望三号向神舟六号发出指令,神舟六号第一次调姿开始

19:44 轨道舱与返回舱成功分离

19:45 推进舱发动机点火,开始回航

19:48:29 推进舱轨道控制发动机关机,飞出远望三号测量船测控段

19:52 返回舱飞过非洲大陆上空,向中国飞来

20:02 返回舱飞过南亚上空,航天员报告飞船工作正常,感觉良好

20:07 推进舱与返回舱成功分离

20:13 返回舱进入通讯黑障区

20:16 着陆场站测控设备发现飞船

20:19 返回舱主伞舱盖打开

20:20 脱减速伞,主伞打开,直升机目视到目标

20:23 返回舱防热大底成功抛掉

20:33 返回舱成功着陆

21:04 返回舱舱门被打开

21:39 两名太空人费俊龙和聂海胜离开返回舱

发射

神舟六号飞船于北京时间(UTC+8)2005年10月12日上午9:00在酒泉卫星发射中心发

射升空, 费俊龙和聂海胜两名中国航天员被送入太空,预计飞行时间为5天。先在轨

道倾角42.4度、近地点高度200公里、远地点高度347公里的椭圆轨道上运行5圈,实

施变轨后,进入343公里的圆轨道,绕地球飞行一圈需要90分钟,飞行轨迹投射到地

面上呈不断向东推移的正弦曲线。轨道特性与神舟五号相同。

在轨

10月12日17时29分,航天员费俊龙打开神舟六号返回舱与轨道舱之间的舱门,进入轨

道舱开展空间科学实验。

10月13日4时开始,航天员进行在轨干扰力试验,在舱内有意识加大动作幅度,以试

验人的扰动对飞船姿态的影响。在进行了开关舱门、穿脱压力服、穿舱、抽取冷凝水

四大项“在轨干扰力”试验后,航天员的活动对飞船姿态的影响很小,飞船可保持正

常飞行,不需纠正飞船姿态。

10月14日清晨,神舟六号在第30圈进行变轨后的首次轨道维持,即根据轨道精测参数

进行微量调整,使飞船回到预定的正常轨道。维持时,神六发动机共点火6.5秒,将

飞船抬高了800米。

10月15日16时29分,与航天员费俊龙、聂海胜通话。18时05分,航天员向北京

航天飞控中心传送他们拍摄的飞船太阳能帆板的数字图像。

着陆

完成预定飞行任务后,飞船用升力再入方式返回内蒙古四子王旗的主着陆场。神舟

六号载人飞船返回地面需要经历4个阶段:制动飞行阶段、自由滑行阶段、再入大气

层阶段、着陆阶段。在此次绕地飞行中,“神舟六号”的轨道舱与返回舱分离后,还

将继续在轨飞行六个月时间,进行一系列科学实验。

由于第一次的载人航天器神舟五号在太空只飞行了一天,主着陆场的天气变化可及时

准确预测,因此未曾启用副着陆场;神舟六号飞船将在太空飞行多天,气象难以准确

预测,因此酒泉卫星发射中心的副着陆场将启用作后备着陆地点。为迎接飞船随时可

能返回,地面共设置了13个着陆点。除内蒙古四子王旗和酒泉卫星发射中心主、副两

个着陆场外,国内外还有11个应急着陆场。着陆场系统包括主、副着陆场分系统,陆

上应急搜救分系统,海上应急搜救分系统,通信分系统和航天员医监医保分系统这5

个分系统。

参与航天员搜救的装备包括:搜索救援直升机、搜索救护直升机、搜索摄录直升机、

指挥调度车、航天员医监医保车、工程运输车、航天员运输车、返回舱吊车和小型搜

索车。

为保证神六和两名太空人安全回家,设计了4把巨型降落伞。返回舱在降落过程中,

至少要先后打开引导伞、减速伞、主伞共3把伞,如果有必要,还要打开第4把备份伞

。太空船返回舱降落伞能否顺利打开,直接关系着回收的成败。主伞不能一下子全部

打开,否则会被高速气流吹破,返回舱也会被摔烂。太空船落地后也并非万事大吉,

如果巨大降落伞被风吹鼓,就可能拖着返回舱快速滚动。为策安全,返回舱落地一刹

那间,舱上的切割器会自动切断伞绳吊带,让降落伞独自飘落,保证返回舱不被伞拖

走。

另外,根据神舟五号太空人杨利伟提出的意见,为使神舟六号着陆时对太空人的冲击

降至最小,舱内太空人的座椅还首次安装了“赋形减震座垫”——根据太空人形体不

同特征量体制造的吸能座垫,可在发生撞击瞬间迅速分散人体的应力,避免人体损伤

在2005年10月16日凌晨3时44分,太空船轨道舱与返回舱成功分离,并在3时45分,飞

船的发动机成功点火,开始回航。在4时07分飞船推进舱与返回舱成功分离,返回舱

自行重返地球。

在着陆期间,在四子王旗主着陆场的夜空一直有一个光点,仿如流星划过夜空。返回

舱在4时13分经过大气层时,产生高温,形成通讯黑障区,一度暂停与控制中心联络

,长达3分钟。在4时20分,返回舱打开主降落伞,在四子王旗主着陆场慢慢降落,在

4时33分返回舱成功降落,2名太空人费俊龙、聂海胜并向控制中心报平安,控制中心

工作人员鼓掌庆祝。在约半小时后,搜救直升机首先发现返回舱,实际着陆地点较预

计相差仅1公里。工作人员打开返回舱门后,医疗人员为2名太空人检查身体,并建议

2人可以自行出舱。

与神舟五号太空人杨利伟不同,费俊龙首先穿着太空衣,自行爬出返回舱,向现场工

作人员招手。聂海胜亦爬出舱门,走下铁梯。2人坐在椅子上,接受工作人员献花,

并感谢大家的关心及热爱,费俊龙表示,这次太空之旅非常顺利,他们在太空舱内的

工作及生活很好,现在身体状况不错。2名太空人在太空逗留了115.5小时,是神舟五

号太空船飞行时间的5倍多,创造中国人在太空逗留最长的时间,圆满结束中国首次

“多人多天”特点的太空旅程。费俊龙及聂海胜重返地面后,被直升机接走,跟着由

专机送返北京,暂时被隔离14天。

技术改进

飞船上新增加了40余台设备和6个软件,使飞船的设备达到600余台,软件82个,元器

件10万余件,做出了四个方面110项技术改进。

围绕两人多天任务的改进:食品柜得到真正使用,通过水箱和单独的软包装两种方式

准备了航天员用水。扩大了冷凝水箱,把所有裸露管线都贴上了吸水材料,确保飞船

湿度控制在80%以下。

轨道舱功能使用方面的改进:放置了食品加热装置和餐具等。轨道舱中挂有一个睡袋

,供两名航天员轮流休息用。轨道舱中还有一个专门的清洁用品柜,航天员可以用里

面的温巾等物品进行清洁。大小便收集装置这次也是首次使用。

提高航天员安全性的改进:对航天员的坐椅缓冲器进行了重新设计,使返回前坐椅提

升后航天员可以看到舷窗外的情况。研制成功了返回舱与轨道舱之间的舱门密闭快速

自动检测装置。研制出一种专用抹布,这种布不产生纤维、静电、异味,专门用来清

洁舱门。

持续性改进:“黑匣子”不仅存储量比原来大了100倍,而且数据的写入和读出速度

也提高了10倍以上,体积却不到原来的一半

搭载

此次神舟六号飞船上搭载的物品主要是载人航天工程纪念品,如邮品、字画、旗帜和

其他纪念品等,还有用来进行科学试验的微生物菌种和农作物。

实验用途

一些鸡蛋、蚕卵和云南普洱茶将随“神六”升空,以研究其基因变异的可能性。

飞船上放置了盛有搏动的心肌细胞和贴壁伸展的成骨细胞的24个细胞培养盒,航天员

和地面工作人员同步对两份相同的活体细胞进行一系列的科学对比实验,研究空间环

境影响心脏和骨骼的细胞分子机理,并通过空间实时飞行验证放置在细胞培养液中、

地面筛选出药物的防护效果。航天员分三个时段操作24个样品盒,操作时,航天员将

把细胞培养带放置在腿上,按不同时段,挤破分别装着激活剂与固定剂的两种胶囊,

激活或固定活体细胞,考察在飞船入轨前与入轨后不同重力条件下细胞样品的状态与

变化。

纪念用途

有10克特别的泥土,由9克大陆泥土和1克台湾泥土组成,寓意十全十美,寄望祖国和

平统一。

飞船数据

飞船名称: 神舟六号

发射: 北京时间2005年10月12日 09:00:00

起飞: 北京时间2005年10月12日 09:00:03.583

着陆: 北京时间2005年10月17日 04:33

飞行时间: 115小时32分钟

轨道: 76圈

高度: 343千米

飞行中如何逃生?

用于发射神舟六号的长征二号F型火箭,有三种模式保证航天员在发生意外时能够安全逃生。这三种模式是:低空逃逸、高空逃逸和船箭应急分离。

低空逃逸是指起飞前30分钟到起飞后120秒即火箭抛逃逸塔前,包括在发射台上的逃逸。低空逃逸是通过逃逸塔来实现的,故称“有塔逃逸”。逃逸塔安置在火箭最顶端,长约8米,形状酷似一根巨大的避雷针。当发射阶段火箭出现灾难性故障时,它可携带轨道舱和返回舱迅速飞离火箭,飞行至安全区域,然后抛掉逃逸塔和轨道舱,返回舱乘降落伞自行返回着陆。此次火箭成功升空后的第一个关键动作就是抛掉逃逸塔,这是为了避免白白消耗运载火箭推力。

火箭抛逃逸塔(起飞后120秒)到整流罩分离前(起飞后200秒),可实施高空逃逸即“无塔逃逸”,由4个高空逃逸发动机和两个高空分离发动机为整流罩提供动力,从而带飞船离开箭体。

整流罩分离后到船箭分离前(起飞后约584秒)如发生故障,可实施船箭应急分离。飞船成功逃逸后,将降落在内蒙古巴丹吉林沙漠到陕西榆林约800公里的范围内。

专家介绍,载人航天飞行中若出现致命故障,最大的可能是在火箭点火、起飞、上升和返回阶段。

返回阶段,航天史上最典型的救生成功的例子是美国阿波罗13号飞船起死回生。10年4月11日,美国阿波罗13号飞船从肯尼迪航天中心顺利升空56小时后,服务舱储氧箱发生爆炸,3名航天员面临葬身太空之灾。但他们临危不惧,按地面科学家们精确计算的轨道和地面指挥员的命令,手动操纵飞船,使用登月舱的氧气和动力,于4月17日成功返回,创造了航天史上死里逃生的奇迹。(新华社)

学会开门、关门

———攸关航天员生死的大问题

据新华社电 航天员从返回舱进出轨道舱,是神六区别于神五的一个重要特点。因此,打开和关好返回舱舱门就成了成功飞行、甚至保障航天员生命的关键。神舟六号飞船舱门设计了多道“门槛”,以拒意外于“门”外。

第一道坎———防误开锁。门会不会因振动被振开?航天员会不会把关好的舱门误打开?防误开锁解决了这些问题。航天员须把拉手转到一个固定位置,门才能被打开。

第二道坎———多道密封措施。太空中没有空气,如果舱门密封性能不好,导致舱内气体泄漏,压力变异,会危及航天员的生命安全。因此,设计师在舱门上取了多道密封圈措施,密封性百分百达到要求。

第三道坎———助力点。处于失重状态下的航天员能使出的力气是很有限的,舱门稍微重一点,都可能影响其开关,于是设计人员在舱门附近为航天员设计了助力点。

第四道坎———快速检漏。设计师研制了快速检漏设备,可以在关闭舱门10分钟左右的时间内,确认舱门是否关好。

第五道坎———舱门清洁布。设计师们花了三个月时间研制成功一块“太空抹布”,以防舱门密封面上一个微小多余物———头发、皮屑、小纤维影响其密封性能。

举头望太阳 低头是故乡

长征火箭首装两只“千里眼”

据新华社电 用于发射神舟六号载人飞船的长征二号F型火箭搭载了图像实时测量系统,这是我国长征系列火箭首次装上的“千里眼”。

据载人航天工程运载火箭系统主任设计师张智介绍,图像实时测量系统主要用于分离判断。在以前的飞行中,火箭的关机、分离等动作都是靠相应的遥测参数来体现的。而通过新增加的图像实时测量系统,地面可以看到火箭从起飞到船箭分离等动作的实时画面,更加准确地判断火箭状态。

图像实时测量系统由两个摄像头、图像压缩处理器、图像综合控制器等设备组成。一个摄像头朝向火箭尾部,用于观测助推器分离和一二级分离;另一摄像头朝上,用于观测整流罩分离和船箭分离。这样,在火箭上升过程中,我们既可向下看到越来越远的地球,也可向上看到太阳或星星,是真正的“现场直播”。

舱内航天服

我国自行研制的航天员舱内航天服。航天服是航天员必备的个人防护救生装备。由于搭乘神舟六号的两名航天员没有出舱活动的任务,因此他们只配备了舱内航天服及配套装置。

我国于20世纪90年代在北京建立了航天员培训中心,专门负责中国航天员的选拔和训练,在选训和飞行试验中实施医学监督和医务保障,研制航天服、太空食品和其他个人装备,以便为神舟号系列飞船的载人飞行提供航天员的人力支撑保证。(新华社)

数字神舟

2:神舟六号载人飞船搭乘2名航天员进行多天飞行。

8:飞船总长8米多。

9:飞船轨道舱航天员有效空间约为9立方米,可以较为自如地转身,做各种操作。

13:飞船系统共有13个分系统组成,按照功能分别被命名为有效载荷、结构与机构、热控制、制导导航与控制、推进、电源、数据管理、测控与通信、环境控制与生命保障、乘员、回收与着陆、仪表照明、应急救生。

21摄氏度:飞船舱内温度始终保持在21摄氏度,上下偏差各为4摄氏度。

60分贝:航天医学研究表明,飞船飞行时绝对安静会对航天员心理产生影响,但也不能太高。神舟飞船太空飞行时舱内仪器噪声约为60分贝,相当于站在没有汽车行驶的普通商业街上。

52台:飞船的三个舱上共有52台发动机,其中推进舱有28台发动机,返回舱有8台发动机,轨道舱有16台。各舱发动机都是偶数,其中都有主机和备份机。

90分钟:飞船每绕地球一圈需要90分钟,圆形轨道时每圈飞行距离约为4.2万多公里,每天飞行距离约68万公里。

300公斤:飞船共有电缆线300余公斤,总长度约30公里。

343公里:飞船飞行时距地面的距离。

600台:全船共有设备600余台。

10万:飞船共有10余万个元器件,来自数千家工厂。

数字“神箭”

载人航天工程运载火箭系统总设计师刘竹生在接受新华社记者专访时,用通俗的语言对长征二号F型火箭的有关数字作了一番详解。

0.、0.9:火箭的可靠性为0.,安全性为0.9。0.的可靠性就是说100次发射里,只有3次火箭可能出现问题;0.9的安全性是指火箭出现1000次问题里,可能有3次会危及航天员的生命安全。这是载人火箭的特性。一般的商用火箭可靠性为0.91到0.93,没有安全性要求。

479吨:火箭起飞重量为479吨。火箭加上飞船重量约44吨,其他的都是液体推进剂。因此,火箭的90%都是液体。

8吨:飞船重量为8吨多,占船箭组合体起飞重量的六十二分之一。要把一公斤的东西送入轨道,就得消耗62公斤的火箭。

3.35米:火箭芯级直径为3.35米。用标准铁路进行运输的火箭最大直径只能达到3.35米。

7.5公里:火箭入轨点速度为每秒7.5公里,这个速度是音速的22倍,相当于1秒钟内从长安街东头跑到西头。

发射时为何掉碎片?

据新华社电 神舟六号飞船发射升空的壮观景象吸引着众多关注的目光。然而,如果稍加留心,人们也许不难从电视画面或是摄影图像中发现,火箭在托举飞船飞离发射塔架腾空而起时,身上在不断地掉落一些碎片。那么,飞船发射时为什么会掉落碎片呢?

据航天发射专家介绍,进入10月份以后,我国北方的大部分地区开始频频受到冷空气的影响,气温明显下降。位于西北戈壁深处的酒泉卫星发射中心,早晚温差加大,夜间气温已达到零度以下。“长征二号F”型运载火箭的测试发射理论温度是零下20摄氏度,但是,低温可能导致某些产品出现低温效应,如密封件失效、电缆插头接触不良、输送管路堵塞等故障,这些都有可能成为发射时的致命“杀手”。

为了尽可能减小低温对火箭发射造成的不利影响,往往会在火箭测试发射过程中取一些保温措施,例如,吹热风、套防寒服、电灯泡照射及贴泡沫塑料等。其中,在火箭箭体上贴泡沫塑料是最常用也最简便的一种办法。火箭点火升空后,大气的剧烈摩擦会将这些泡沫塑料从箭体上剥离下来,这就成了人们看到的从火箭身上掉下的碎片。

神六两位航天员如何分工?

据新华社电 神舟五号只有杨利伟一位乘客,神舟六号为什么要上两位航天员?他们如何分工?

按照载人航天工程的规划,神舟飞船作为未来空间站的天地往返运输器,应该具有将多位航天员和少量货物送往空间站的功能。因此,工程为神舟飞行设计的基本状态就是多位航天员、多天飞行,但考核要一步一步地进行,而这次的神舟六号飞行,就到了考核多人多天的时候了:作为工程第二阶段的第一次试验,这次飞行要证明多人是否能在空间进行多天的工作和生活。

飞船操作技术训练子系统的主管设计师胡银燕说,两位航天员一起上天执行任务,需要在操作上分工配合。正常飞行状态下,航天员需要进行110多项手动操作,01号航天员费俊龙负责大部分指令的发送,与地面的通话,以及左侧手控面板和手柄的操作,02号航天员聂海胜负责右侧手控面板的操作。此外,两位航天员的工作和休息也都有分工:一人在轨道舱内进行空间科学实验操作时,另一个必须在返回舱值班;一人休息时另一人则值班。

胡银燕说,两名航天员虽然分工不同,但对他们的技术要求是一样的。

神六会有防热瓦问题吗?

据新华社电 3个多月前,美国发现号航天飞机发生了防热瓦失效的险情,“防热瓦”一度成为国际航天界使用频率最高的一个词汇。飞船系统热控制分系统主任设计师范含林指出,神舟六号载人飞船返回舱用一次性烧蚀材料防热,而航天飞机上的防热瓦是重复使用,我们不会出现类似故障。

2003年2月1日,美国哥伦比亚号航天飞机返回地面时在空中解体,机上7名宇航员全部遇难。5月14日,事故调查委员会称,哥伦比亚号起飞时遭到外力撞击,结果导致防热瓦出现裂缝,超高温气流乘虚而入,造成飞机解体。2005年7月26日,发现号航天飞机几经推迟后终于发射升空,却不幸又在防热瓦上出了问题。一块防热瓦被撞失效,全世界都为之担忧,好在发现及时,宇航员通过太空行走对其进行了修复。

范含林介绍,防热瓦是疏松、轻质呈脆性的陶瓷材料,耐高温、质量轻,高温下不发生物理和化学变化,故可重复使用。然而它在连接和受力等方面却存在着天生的弱点。整个航天飞机上的防热瓦达数万块,一块出现问题就可能导致机毁人亡。

航天飞机在重复使用过程中,防热瓦的气动外形必然会受到程度不同的损害,随着使用次数的增加,隐患就越大。

飞船防热层乃至整个飞船都是一次性使用,从这一点上说,飞船的功能虽然不及航天飞机,但可靠性却远远超出航天飞机。神舟飞船以及俄罗斯的联盟系列飞船,返回舱返回时也会与大气产生磨擦,在表面产生数千摄氏度高温,这个过程要比航天飞机剧烈。不过,飞船上使用的是成分和工艺都极为复杂的烧蚀材料,通过它的燃烧把热量带走。烧蚀材料都留有较大的余量,不会出现烧光的情况。据了解,这种材料,我国在生产工艺等方面已经大大超过了美国,在很多技术指标上也领先于俄罗斯。

河北“太空药材”今如何?

本报记者 刘丽普

神舟六号载人飞船顺利升空之际,“中国药都”安国再次成为人们关注的焦点,因为这里的中药材曾经搭乘神舟一号、三号和四号飞船遨游太空。实验也证明,这些的试种已初步获得了成功。

12日上午,安国药都公园、安国市科葳有限公司的试验基地。孙忠进经理告诉记者,这里栽培的板蓝根、荆芥等中药材不同于普通的中药材,都是“太空药材”,用搭载神舟飞船的药材繁殖、培育出来的。“与普通药材相比,可以明显感觉到这些药材在枝叶和产量等方面都占优势。”除此之外,记者还发现,这里栽培的豆角、黄豆、樱桃西红柿等与常见的也有很大差别:豆角的大小竟可以与黄瓜相媲美,如果不是被提醒,还看不出来那就是豆角。“樱桃西红柿的苗可以长到小树那么高,结出来的果实也特别多,口感与一般的也有所不同。”具体联系和努力实现安国药材搭载神舟飞船的李小月说。

回忆安国的药材搭载神舟飞船畅游太空一事,李小月说:“那时候,我还是安国市的,正好一位战友在北京药用植物研究所主持中药栽培方面的工作,了解到如果提升中药的药品质量,主要通过组培和搭载来实现。既然是市里的相关领导,提升‘药都’药品的质量也是自己的责任,便与战友说了‘搭载’的想法,后又结识了航天科技集团总公司航天育种试验基地的有关人员,没想到通过努力,还真实现了。”

李小月介绍说,从1999年神舟一号飞船发射升空,到2002年底神舟四号发射,安国先后三次、共有152克中药材和粮食、蔬菜遨游太空,其中绝大部分是中药材,蔬菜和粮食只占极小比例。目前,太空药材板蓝根、荆芥等已经育出千万颗,收获板蓝根、藿香、草决明、荆芥籽种各数十公斤。

据专家介绍,目前,这些“太空药材”正处于试验、观察阶段,还不能明确何时能推向市场。

■背景资料

中国载人航天大事记

1956年10月8日,我国第一个火箭导弹研制机构———国防部第五研究院成立,钱学森任院长。1958年4月,开始兴建我国第一个运载火箭发射场。

1964年7月19日,我国第一枚内载小白鼠的生物火箭在安徽广德发射成功,我国的空间科学探测迈出了第一步。

1968年4月1日,我国航天医学工程研究所成立,开始选训航天员和进行载人航天医学工程研究。

10年4月24日,随着第一颗人造地球卫星“东方红”1号在酒泉发射成功,我国成为世界上第5个发射卫星的国家。

15年11月26日,首颗返回式卫星发射成功,3天后顺利返回,我国成为世界上第3个掌握卫星返回技术的国家。

19年,远望1号航天测量船建成并投入使用,我国成为世界上第4个拥有远洋航天测量船的国家。目前我国已形成先进的陆海基航天测控网,由北京航天飞行控制中心、西安卫星测控中心、陆地测控站、4艘远望号远洋航天测量船以及连接它们的通信网组成,技术达到了世界先进水平。

1985年,我国正式宣布将长征系列运载火箭投入国际商业发射市场。1990年4月7日,长征三号运载火箭成功发射美国研制的“亚洲一号”卫星,截至目前已将27颗国外制造的卫星成功送入太空,我国在国际商业卫星发射服务市场中占有了一席之地。

1990年7月16日,长征2号捆绑式火箭首次在西昌发射成功,其低轨道运载能力达9.2吨,为发射载人航天器打下了基础。

1990年10月,载着两只小白鼠和其他生物的卫星升上太空,开始了我国首次携带高等动物的空间轨道飞行试验。试验的圆满成功,为我国载人航天器生命保障系统的设计以及长期载人太空飞行获得了许多宝贵数据。

1992年,我国载人飞船正式列入国家进行研制,这项工程后来被定名为神舟号飞船载人航天工程。

1999年11月20日、2001年1月10日、2002年3月25日、2002年12月30日,我国先后4次成功发射神舟一号至四号无人飞船,载人飞行已为时不远。

2003年10月15日,我国成功发射第一艘载人飞船神舟五号。21个小时23分钟的太空行程,标志着中国已成为世?

气象卫星的用途和作用(自述)

避雷器实验室在哪里?

电力专用车

电力专用指挥车

应急电源车

电力预防性试验车

电力耐压试验车

带电作业车

化学试验车

电缆试验车

在线监测、巡检设备

ED0506系列数字式6气体微水、密度综

ED0502F型六氟化硫在线监测报警系统

ED0308系列断路器在线监测系统

ED0210型变压器油中气体含量在线监测系统

容性设备及避雷器绝缘在线监测系统

变电站绝缘子污秽在线监测系统

ED0702A型本安型在线式氢气露点仪

ED0704型在线式氢气纯度分析仪

ED0710系列在线式氢气综合分析仪

绝缘耐压试验设备

SJTU系列冲击电压发生器

YDQ系列充气超轻型试验变压器

YDQD系列带抽头充气式多用高压试验变压器

YDQW系列充气无晕超轻型试验变压器

YDQJC系列充气式串激高压试验变压器

YD系列油浸式高压轻型试验变压器

YDJC系列串激轻型试验变压器

EDCDP系列超低频高压发生器

GTU系列高电压大容量充气式无局放高压组合电

JY系列绝缘筒式无局放全绝缘试验变压器

EDCZB-09型操作波发生器装置

GTB系列干式高压试验变压器

ED2690/ED2691智能耐压测试仪

ED2671A通用交/直流耐压测试仪

ED2670/ED2670A通用交流耐压测试

ZDTC系列高压试验变压器电动操作台

ED2672/ED2672A耐压/绝缘电阻测

ED2670B通用交/直流耐压测试仪

TPXB系列调频串联谐振装置

TC系列高压试验变压器操作台

XC系列高压试验变压器操作箱

TPXB-B系列变电站电器设备交流耐压调频串

TPXB-C系列CVT检验用工频串联谐振装置

TPXB-D系列电缆交流耐压调频串联谐振装置

TPXB-E系列发电机交流耐压调频调感串联谐

TPXB-F系列发电机交流耐压工频串联谐振装

TPCB系列变频控制电源

EDYD系列激励变压器

EDFC系列电容分压器

EDDK系列电抗器

DMA2550型绝缘电阻测试仪

DMB5000型绝缘电阻测试仪

DMC2000型绝缘电阻测试仪

DMD系列绝缘电阻测试仪

DME2305型数显绝缘电阻测试仪

DME2306型数显绝缘电阻测试仪

Q50-300 放电保护球隙

FRC系列交直流数字分压器

H9840型保护式直流数字微安表

高压滤波电容

T6000型无线高压核相器

2DL系列高压硅堆

FZ系列高压直流放电棒

FRD型高压核相器

YDQ-Ⅱ型声光伸缩验电器

400ml标准式试油杯

均压球

水电阻

警示灯,警示牌

EDC系列高压电容

测试导线、电流型、电压型多功能连接件,接插件

变压器试验设备

BRTC-I型阻抗法绕组变形特性测试仪

BRTC-II型频响法绕组变形特性测试仪

BTRC-III型频响法、阻抗法变压器绕组变

ED0202A系列变压器综合特性测试台

ED0202B系列变压器综合特性测试台

ED0202C系列全自动变压器综合特性测试台

ED0203型变压器变比全自动测试仪

ED0203B型全自动三相变压器变比测试仪

ED0204-1型(原H9820)变压器直流

ED0204-2型变压器直流电阻测试仪

ED0204-3型变压器直流电阻测试仪

ED0204-5型变压器直流电阻测试仪

ED0204-10型变压器直流电阻测试仪

ED0204-20型变压器直流电阻测试

ED0204-40型变压器直流电阻测试仪

ED0204-III型变压器直流电阻测试仪

ED0205型变压器损耗线路参数测试仪

ED0207型变压器容量及空负载特性测试仪

ED0209型电抗器电参数测试仪

EDBYKC-2000A型电力变压器有载开关

EDBYKC-2000B型电力变压器有载开关

EDTCD-2008型局部放电检测仪

ED2102系列数字式局部放电检测仪

JZF—10校正脉冲发生器

JZF-9型校正脉冲发生器

60KV-1000PF无局部放电耦合电容

60-300KV-1000PF无局部放电耦合

EDGLB系列倍频发电机电源隔离滤波器

EDLB系列电源隔离滤波器

EDKLB系列滤波控制电源

TPCB-W系列纯净变频综合试验电源

EDBP系列倍频发电机组

SBF系列三倍频发生器

EDGWS型工频介质损耗自动测试仪

EDDX6000型异频介质损耗自动测试仪

RLC—9QYG系列瓦斯(气体)继电器压力释

RLC-8QYG气体继电器压力释放阀自动测试

红外热像仪

HM-160红外热像仪

E8-N红外热像仪

HM-200红外热像仪

E8-TN红外热像仪

HM-300红外热像仪

E8-GN红外热像仪

HY-S280红外热像仪

HY-S380红外热像仪

HY-G90红外热像仪

HY-6800红外热像仪

HR-600红外热像仪

JK150红外热像仪

JK350红外热像仪

JK650红外热像仪

SAT-JK150/350/650-V红外热

SAT-CK350-VN红外热像仪

SAT-CK351-N红外热像仪

SAT-CK350-U红外热像仪

SAT-CK350-W红外热像仪

HRYXJ-A(384)红外热像仪

HRYXJ-A(160)红外热像仪

YRH250红外热像仪

YRH-600矿用本质安全型红外热像仪

NV618夜间驾驶安全系统

NV628夜间驾驶安全系统

MC601体温筛查红外热像仪

MC602体温筛查红外热像仪

MC603体温筛查红外热像仪

MC602C体温筛查红外热像仪

避器测试设备

ED0401-I型避雷器放电记录器校验仪

ZGF-Q系列轻便型直流高压发生器

ED0401-II型雷击(放电)计数器校验器

ZGF系列便携式直流高压发生器

ED0403—II型氧化锌避雷器特性测试仪

ZGF-600kV/5mA直流高压发生器

ED0402-I型氧化锌避雷器直流参数测试仪

ED0402-II型氧化锌避雷器直流参数测试

ED0403—I型氧化锌避雷器特性测试仪

开关检测设备

ED0301HMT开关低压断路器测试仪

ED0301C型高压开关动特性测试仪

ED0301A型接触器同步测试仪

ED0301B型高压开关动特性测试仪

ED030G型高压开关动特性测试仪

ED0303B型回路电阻测试仪

ED0302A型高压开关操作电源

ED0302B型高压开关动作试验仪

ED0303A型回路电阻测试仪

ED0301E型高压开关动特性测试仪

ED0301F型高压开关动特性测试仪

ED0301H型石墨触头开关测试仪

ED0303C型回路电阻测试仪

ED0301D型高压开关动特性测试仪

ED0304-I型真空度测量仪

ED0304-II型真空度测量仪

ED0305A煤矿开关综合测试台

ED0305B型高压开关试验电源车

ED0306系列通用温升测量系统

DDG系列便携式大电流发生器

ED0309型直流断路器安秒特性测试系统

ED0307-1开关特性智能测试系统

ED0307-2型开关特性智能测试系统

ED0307-3型开关特性智能测试系统

ED0308型高压断路器磨合测试系统

ED0310型开关柜局放监测整体解决方案

ED03011A型高压开关柜接地电阻测试仪

ED03011B型高压开关柜接地电阻测试仪

电机检测设备

EDHNZ-1型发电机转子交流阻抗测试仪

EDR-102型发电机特性测试仪

ED2605型匝间绝缘冲击耐压试验仪

EDHNZ-3型发电机转子交流阻抗测试仪

EDHNZ-4型发电机转子交流阻抗测试仪

EDTS系列电动机综合测试台

优越的低速加载能力基本上从零速开始就可以提供

油化分析检测设备

EDWS-3型微量水分测定仪

EDWS-5型微量水分测定仪

EDWS-8型微量水分测定仪

EDBSD-2型闭口闪点测试仪

EDBSD-07型闭口闪点测定仪

EDKSD-3型开口闪点测定仪

EDKSD-07型开口闪点全自动测定仪

EDZL—2型自动张力仪

EDZL—3型自动张力仪

EDSZ—3型石油产品酸值全自动测定仪

EDPH-07型水溶性酸测定仪

EDND-2型石油产品运动粘度测定仪

EDND-3型石油产品运动粘度测定仪

EDZND-8型凝点倾点测定仪

EDZND-10型凝点自动测定仪

EDWS-10型油中水分测定仪

EDSKD—3型绝缘油体积电阻率自动测定仪

EDDZ-3型多功能振荡仪

EDDW-1型低温稳定型实验仪

EDXS-2型液相锈蚀测定仪

EDXS-3型液相锈蚀测定仪

EDRH-3型破乳化测定仪

EDPM-07型泡沫特性测定仪

EDRD-09型全自动自燃点测定仪

EDKF-09型空气释放值测定仪

EDZY-08型全自动旋转氧弹值测定仪

EDFF型电阻探针腐蚀监测仪

EDLQ-2型沥青油污器皿清洗器

EDZL-2A型石油产品蒸馏仪

EDSY-1型恒温水浴

EDIJJ—II型绝缘油介电强度测试仪

EDIJJ—IIB型绝缘油介电强度测试仪

EDIJJ—III型三杯式绝缘油介电强度测试

EDIJJ—VI型六杯式绝缘油介电强度测试仪

DZL系列单级高效真空滤油机

DZL-A系列双级高效真空滤油机

LY系列板框压力式滤油机

SL系列手提式滤油机

ED6000型一体化精密油介损测试仪

EDMD系列密度仪

6气体检测回收设

ED0501B型精密露点仪

ED0501D型精密露点仪(6微量水分测

ED0501E型精密露点仪(6微量水分测

ED0501F型冷镜式精密露点仪

DMT-142P型精密露点仪

DMT-242系列便携式6露点仪

ED0502A型高精度6气体检漏仪

ED0502B型6定量检漏仪

ED0502C型六氟化硫气体检漏仪

ED0502D型六氟化硫气体检漏仪

ED0502E型6气体定量检漏仪

ED0502F型六氟化硫在线监测报警系统

ED0503A型6纯度分析仪

ED0503B型6纯度分析仪

ED0503C型6气体浓度(百分比)分析

ED0504A型6分解产物检测器

ED0504B型6故障定位分析仪

ED0504C型6智能分解产物测试仪

ED0505C型6气体密度继电器校验仪

ED0505D型6气体密度继电器校验仪

ED0506系列数字式6气体微水、密度综

ED0507C型6断路器转接过滤装置

ED0507D型6开关维护多功能接头附件

ED0507E型6气体取样装置

ED0508DP型6综合测试仪

ED0508DF型6综合测试仪

ED0508PF型6综合测试仪

ED0508DPF型6综合测试仪

ED0510型激光型sf6气体和氧气在线检测

ED0511型6气体泄漏激光成像仪

EDHC-12Y型6气体回收装置

EDHC-38Y-160W型6气体回收充

EDHC-15Y-15W型6气体回收净化

EDHC-15Y-15L型立式6气体回收

EDHC-RF300C型6气体回收净化提

ED30C型6气体微型无油回收装置

VCH-B046R02型抽真空装置

VCH-8型6气体抽真空充气装置

VCH-16型6气体抽真空充气体装置

VCH-30型6气体抽真空充气装置

VCH-70型6气体抽真空充气装置

VCH-150型6气体抽真空充气装置

6气体储罐

Mega系列全自动6气体回收装置

Compact系列手动6气体回收装置

Economy系列全自动6气体液态回收装

C500R02 6 称重储存罐

ED280C型小型6气体无油回收装置

H2气体分析检测设备

DMT-242型便携式氢气露点仪

ED0702A型本安型在线式氢气露点仪

ED0702B型在线式露点仪

ED0702C型Transmet本安型在线式

ED0703型便携式热导型氢气纯度分析仪

ED0704型在线式氢气纯度分析仪

ED0705型便携式氢中氧、氧中氢分析仪

ED0706A型在线式氢中氧H2-O2分析仪

ED0706B型在线式氧中氢O2-H2分析仪

ED0707型数字式气体检漏仪

ED0708型在线式氢气泄漏报警系统

ED0709A型便携式氢气综合测试仪

ED0709B型便携式氢气综合测试仪

ED0709C型便携式氢气综合测试仪

ED0709D型便携式氢气综合测试仪

ED0710系列在线式氢气综合分析仪

二次回路、保护设备

MPT2300A型微机型继电保护测试系统

MPT2300B型微机型继电保护测试系统

MPT2300C型微机型继电保护测试系统

MPT4330(MPT4340)型微机型继电

MPT6430(MPT6440)型微机型继电

MPT2800型同期装置测试仪

ED0101A型单相热继电器测试仪(电动机保

ED0101B型单相热继电器测试仪(电动机保

ED0101C型三相热继电器测试仪(电动机保

ED0101D型三相热继电器测试仪(电动机保

ED0102型功率差动继电器校验仪

ED0103A型剩余电流保护装置动作特性测试

ED0104型继电保护校验仪

ED0105型综合移相器

ED0107A型断路器模拟试验装置

ED0107B型断路器模拟试验装置

ED0107C型断路器模拟试验装置

ED0107D型断路器模拟试验装置

ED0601型漏电保护器测试仪

ED0602型数字毫秒计

ED0603型相序表

ED0604A型数字双钳相位伏安表

ED0605A型保护回路矢量分析仪

ED0605B型保护回路矢量分析仪

ED0606B型智能三相用电检查仪

ED0607A型三相多功能伏安相位表

ED0607B型智能型三相相位伏安表

ED0608型直流系统接地故障测试仪

ED0609型低频信号发生器(原DPX-II

ED0610型单节蓄电池电池活化仪

ED0611型蓄电池组巡回监测仪

ED0612-30型智能蓄电池放电负载测试仪

ED0612-50型智能蓄电池放电负载测试仪

ED0612-100型智能蓄电池放电负载测试

ED0612-150型智能蓄电池放电负载测试

ED0612-200型智能蓄电池放电负载测试

3551型蓄电池内阻测试仪

ED0604A型数字双钳相位伏安表

运行线路检测设备

ZD-3型复合绝缘子带电检测仪

ED-5700型绝缘子分布电压测试仪

EDHZD-1型电缆故障定位仪

EDHZC-3型电缆故障测试仪

EDHZC-4型电缆故障测试仪

EDHZC-5型通信电缆故障测试仪

EDSB-1型电缆识别仪

EDSB-2型带电电缆识别仪

EDZS-1型电缆扎伤器

EDZS-2型电缆安全刺扎器

EDHZC-6型地下管线探测仪

脉冲电容

EDGY-3型电缆故障用一体化高压发生器

EDGY-4型电缆故障用分体高压发生器

EDHZD-2型液显多功能定点仪

EDWG-16型线路故障距离测试仪

LY-DY-III型智能型电导盐密仪

ED2006型灰密测量成套装置

ED2007型高低压钳形电流表

ED2007B型高低压钳形电流表

ED2008A型全自动电容电感测试仪

ED2008B型全自动电容电桥测试仪

ED2008C型配网电容电流测试仪

接地装置检测设备

ED4001型双钳口接地电阻测试仪

ED4002型双钳口接地电阻测试仪(高压铁塔

ED4003型双钳口接地电阻测试仪

ED4004型双钳多功能接地电阻测试仪

EDWR-II型大型地网接地电阻测试仪

EDWR-III型大型地网接地电阻测试仪

EDJC-I型杆塔接地电阻测试仪

ED2668型智能接地电阻测试仪

ED2667型通用接地电阻测试仪

ED2571型数字式接地电阻测试仪

EDTY型电气设备地网导通检测仪

DJZ系列发电厂和变电所接地电阻测试装置

ETCR2100+型钳形接地电阻测试仪

ETCR2000+型钳形接地电阻测试仪

互感器计量检测设备

EDHP型一体化互感器检定装置

EDJHP型极速全程控源互感器检定装置

EDHG—III型中文大液晶智能型互感器校验

EDHG—V型智能型互感器校验仪

EDHL—II型电流互感器现场测试装置

EDHL—I型电流互感器(误差分析)测试仪

EDYJ—II型二次压降全自动测试仪

EDFH—II型互感器二次负荷在线测试仪

EDYF-I型二次压降及负荷测试仪

HJQ系列精密电压互感器(充气式)

HJY系列精密电压互感器(油浸式)

HJG系列精密电压互感器(干式)

HL系列标准电流互感器

EDFY-95型电压互感器负荷箱

EDFY-96型电流互感器负荷箱

EDFY98电流电压互感器负载箱

DL系列大电流测试导线

HLS系列三相标准电流互感器

ED2000A型便携式互感器综合测试仪

ED2000B型互感器综合测试仪

ED2000C型CT、PT互感器综合测试仪

ED2000D型CT、PT互感器综合测试仪

ED2000E型互感器综合测试仪

ED2000F型互感器综合测试仪

ED2000G型互感器综合测试仪

ED2000H型CT、PT互感器综合测试仪(

ED2000I型智能型CT综合测试仪

ED2000J型智能型CT,PT综合测试仪

电能表检定装置

ED601系列单相电能表检定装置

ED602型单相宽量程标准电能表

ED603系列三相电能表检定装置

ED604三相宽量程标准电能表

SH15型单相电工表

ED3000A型单相便携式电能表检定装置

ED3000B型单相电能表现场校验仪

ED3000C型三相便携式电能表检定装置

ED3000D型三相多功能电能表校验仪

热工电测计量检测设备

温度自动检定装置(系统)软件

SS-1002海洋温度计专用恒温槽

TM-1204-01/02 特配专制温度计

SB6502/6110四线制热电阻模拟器

TB-2400精密电阻比率温度数显仪

TM-1002台式二通道精密标准铂电阻温度计

TM-1000C二通道精密标准铂电阻温度计数

TM-1204四通道精密标准铂电阻温度计数显

TL-8210M变压器温度计校验装置

PD-3010变压器温度计配件

PD-3010变压器温度校验装置

SR-1020便携式常温黑体辐射源检定仪

SR-3080大口径可变光阑红外常温黑体

SR-3020红外耳温计校验黑体腔

PT-4002大气压力检定仪

TL-8310便携式制冷宽温精密恒温油槽

ML-2300精密宽温油槽

MR-5010B标准电阻精密恒温油槽

MR-5015标准电阻精密恒温油槽

TL-1010S水三相镓点支架

TL-1010S精密水三相点瓶冻制保存装置

TD-2500M铟点锡点锌点固定点装置

TD-2500M铟点锡点锌点固定点配件

TL-9001紧固力可调温度计支架

ML-2100小型化便携精密制冷宽温水槽

TL-1010N便携精密制冷宽温水槽

TL-1040便携式低温酒精槽

PD-1020干体式温度校验仪

PD-2400干孔温度检定、校验炉

PD2680干体式温度校验仪

PD-3010干体式温度检定仪

PD-4480干体式温度检定仪

干体式温度校准仪测试线

AK-PD套管

ED105压力校验仪

ED106压力校验仪

ED107回路校验仪

ED108频率校验仪

ED109型电信号校验仪

ED110型热电阻校验仪

ED111热电偶校验仪

ED112热工信号校验仪

ED113型过程信号校验仪

ED114-600PXX系列压力模块

ED115智能充电器、ED115电池

ED201型热电偶热电阻温度计自动检定装置

ED202型二次仪表检定台

ED203型热电偶,热电阻自动检定装置

ED204型多功能压力仪表检定台

ED301型交流样(RTU)在线校验装置

ED302型多功能交流样、变送器校验装置

ED303型多功能仪表变送器检定装置

ED304型多功能三相电测量仪表校验装置

ED305型多功能交流样变送器校验装置

ED205型压力传感器检定装置

ED30系列多功能校准仪(三用表校验仪)

ED101多功能过程仪表校验仪

ED102多功能现场校验仪

ED103多功能热工校验仪

ED104压力校准器

parameters这词什么意思?

人造卫星的简介

卫星,是指在宇宙中所有围绕行星轨道上运行的天体。环绕哪一颗行星运转,就把它叫做哪一颗行星的卫星。比如,月亮环绕着地球旋转,它就是地球的卫星。

“人造卫星”就是我们人类“人工制造的卫星”。科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便进行探测或科学研究。围绕哪一颗行星运转的人造卫星,我们就叫它哪一颗行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。

地球对周围的物体有引力的作用,因而抛出的物体要落回地面。但是,抛出的初速度越大,物体就会飞得越远。牛顿在思考万有引力定律时就曾设想过,从高山上用不同的水平速度抛出物体,速度一次比一次大,落地点也就一次比一次离山脚远。如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,它将围绕地球旋转,成为一颗绕地球运动的人造地球卫星,简称人造卫星。

人造卫星是发射数量最多,用途最广,发展最快的航天器。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。中国于10年4月24日发射了东方红1号人造卫星,截止1992年底中国共成功发射33颗不同类型的人造卫星。

人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。

人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球卫星所遥感的面积可达几万平方千米。

在卫星轨道高度达到35800千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,并大大简化地面站的设备。目前绝大多数通过卫星的电视转播和转发通信是由静止通信人造卫星种类

人造卫星是个兴旺的家族,如果按用途分,它可分为三大类:科学卫星,技术试验卫星和应用卫星。

① 科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气,地球辐射带,地球磁层,宇宙线,太阳辐射等,并可以观测其他星体。

② 技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。航天技术中有很多新原理,新材料,新仪器,其能否使用,必须在天上进行试验;一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用;人上天之前必须先进行动物试验……这些都是技术试验卫星的使命。

③ 应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括:通信卫星,气象卫星,侦察卫星,导航卫星,测地卫星,地球卫星,截击卫星等等。

运行轨道

人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极轨轨道。

① 地球同步轨道 是运行周期与地球自转周期相同的顺行轨道。但其中有一种十分特殊的轨道,叫地球静止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫星是静止不动的。一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。地球同步轨道有无数条,而地球静止轨道只有一条。

② 太阳同步轨道 是轨道平面绕地球自转轴旋转的,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度(360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同一纬度的当地时间是相同的。气象卫星、地球卫星一般用这种轨道。

③ 极地轨道 是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个地球表面。气象卫星、地球卫星、侦察卫星常用此轨道。

人造卫星工程系统

通用系统有结构,温度控制,姿态控制,能源,跟踪,遥测,遥控,通信,轨道控制,天线等等系统,返回式卫星还有回收系统,此外还有根据任务需要而设的各种专用系统。人造卫星能够成功执行预定任务,单凭卫星本身是不行的,而需要完整的卫星工程系统,一般由以下系统组成:

1.发射场系统

2.运载火箭系统

3.卫星系统

4.测控系统

5.卫星应用系统

6.回收区系统(限于返回式卫星)

[编辑本段]卫星系统的组成部分

卫星系统中,各种设备按其功能上的不同,分为有效载荷及卫星平台两大部分。卫星平台又分为多个子系统:

有效载荷(不同类型卫星均不同,共同的有:)

1、对地相机

2、恒星相机

3、搭载的有效载荷

卫星平台(为有效载荷的操作提供环境及技术条件,包括:)

1、服务系统

2、 热控分系统

3、 姿态和轨道控制分系统

4、 程序控制分系统

5、 遥测分系统

6、 遥控分系统

7、 跟踪和测试分系统

8、 供配电分系统

9、 返回分系统(限於返回式卫星)

世界各国首颗卫星发射

苏联第一颗人造地球卫星的发射成功,揭开了人类向太空进军的序幕,大大激发了世界各国研制和发射卫星的热情。

美国于1958年1月31日成功地发射了第一颗“探险者”-1号人造卫星。该星重8.22公斤,锥顶圆柱形,高203.2厘米,直径15.2厘米,沿近地点360.4公里、远地点2531公里的椭圆轨道绕地球运行,轨道倾角33.34”,运行周期114.8分钟。发射“探险者”-1号的运载火箭是“丘辟特”℃四级运载火箭。

法国于1965年11月26日成功地发射了第一颗“试验卫星”-1(A-l)号人造卫星。该星重约42公斤,运行周期108.61分钟,沿近地点526.24公里、远地点1808.85公里的椭圆轨道运行,轨道倾角34。24”。发射A1卫星的运载火箭为“钻石,tA号火箭,其全长18.7米,直径1.4米,起飞重量约18吨。

日本于10年2月11日成功地发射了第一颗人造卫星“大隅”号。该星重约9.4公斤,轨道倾角31.07”,近地点339公里,远地点5138公里,运行周期144.2分钟。发射“大隅”号卫星的运载火箭为“兰达”-45四级固体火箭,火箭全长16.5米,直径0.74米,起飞重量9.4吨。第一级由主发动机和两个助推器组成,推力分别为37吨和26吨;第二级推力为11.8吨;第三、四级推力分别为6.5吨和1吨。

中国于10年4月24日成功地发射了第一颗人造卫星“东方红”1号。该星直径约1米,重173公斤,沿近地点439公里、远地点2384公里的椭圆轨道绕地球运行,轨道倾角68,5”,运行周期114分钟。发射“东方红”1号卫星的远载火箭为“长征”1号运载火箭,火箭全长29,45米,直径2.25米,起飞重量81.6吨,发射推力112吨。

英国:英国于11年10月28日成功地发射了第一颗人造卫星“普罗斯帕罗”号,发射地点位于澳大利亚的武默拉(Woomera)火箭发射场,运载火箭为英国的黑箭运载火箭.近地点537公里,远地点1593公里。该星重66公斤(145磅),主要任务是试验各种技术新发明,例如试验一种新的遥测系统和太阳能电池组。它还携带微流星探测器,用以测量地球上层大气中这种宇宙尘高速粒子的密度。

除上述国家外加拿大、意大利、澳大利亚、德国、荷兰、西班牙、印度和印度尼西亚等也在准备自行发射或已经委托别国发射了人造卫星。

第一颗人造地球卫星

1957年10月4日,苏联发射了第一颗人造地球卫星。这一具有划时代的意义,它宣告人类已经进入空间时代。

第一颗人造地球卫星呈球形,直径58厘米,重83.6公斤。它沿着椭圆轨道飞行,每96分钟环绕地球一圈。人造地球卫星内带着一台无线电发报机,不停地向地球发出“滴——滴——滴”的信号。一些人围着收音机。侧耳倾听着初次来自太空的声音。另一些人则仰望天空,试图用肉眼在夜晚搜索人造地球卫星明亮的轨迹。但是,当时认识很少有人了解人造地球是载人宇宙飞船的前导,科学家正在加紧准备载人空间飞行。一个月后,1957年11月3日,苏联又发射了第二颗人造地球卫星,它的重量一下增加了5倍多,达到508公斤。这颗卫星呈锥形,为了在卫星上节省出位置增设一个密封生物舱,不得不把许多测量仪器一道最末一节火箭上去。在圆柱形的舱内安然静卧着一只名叫“莱卡依”的小狗。小狗身上连接着测量脉搏、呼吸、血压的医学仪器,通过无线电随时把这些数据报告给地面。为了使舱内空气保持新鲜清洁,还安装了空气再生装置和处理粪便的排泄装置。舱内保持一定的温度和湿度,使小狗感到舒适。另外还有一套自供食装置,一天三次定时点亮信号灯,通知莱依卡用餐。使人遗憾的是,由于当时技术水平的限制,这颗卫星无法收回,试验狗在卫星生物舱内生活了一个星期,完成全部实验任务后,只好让它服毒自杀,成为宇航飞行中的第一个牺牲者。

人造卫星的用途

一、人造卫星的用途如何决定?

人造卫星的组成基本上可分为「卫星本体」及「酬载」两部分。酬载即是卫星用来做实验或服务的仪器,卫星本体为维持酬载运作的载具。卫星的用途依其所携带的酬载而定。

二、人造卫星有哪几类?用途为何?

人造卫星的优点在于能同时处理大量的资料及能传送到世界任何角落,使用三颗卫星即能涵盖全球各地,依使用目的,人造卫星大致可分为下列几类:

科学卫星:送入太空轨道,进行大气物理、天文物理、地球物理等实验或测试的卫星,如中华卫星一号、哈伯等。

通信卫星:做为电讯中继站的卫星,如:亚卫一号。

军事卫星:做为军事照相、侦察之用的卫星。

气象卫星:摄取云层图和有关气象资料的卫星。

卫星:摄取地表或深层组成之图像,做为地球探勘之用的卫星。

星际卫星:可航行至其它行星进行探测照相之卫星,一般称之为「行星探测器」,如先锋号、火星号、探路者号等。

世界上第一颗人造卫星

1957年10月4日。苏联宣布成功地把世界上第一颗绕地球运行的人造卫星送入轨道。美国官员宣称,他们不仅因苏联首先成功地发射卫星感到震惊,而且对这颗卫星的体积之大感到惊讶。这颗卫星重83公斤,比美国准备在第二年初发射的卫星重8倍。

苏联宣布说,这颗卫星的球体直径为55厘米,绕地球一周需1小时35分,距地面的最大高度为900公里,用两 个频道连续发送信号。由于运行轨道和赤道成65度夹角,因此它每日可两次在莫斯科上空通过。苏联对发射这颗卫星的火箭没做详细报道,不过曾提到它以每秒8公里的速度离开地面。他们说,这次发射开辟了星际航行的道路。

卫星。。。

中国第一颗人造卫星诞生

30多年过去了,今天,中国有几十颗卫星在太空中遨游,神舟号试验飞船返回大地,中国已开始向载人航天迈步。回顾中国的航天史,不能不提到它的开端“东方红一号”这一高精尖技术在基础差且动荡的时期一举成功。“东方红一号”卫星诞生的始末,长期是个谜。

10年4月24日,中国成功的发射了自己的第一颗人造卫星,卫星轨道的近地点高度是436KM,远地点高度为2384km,轨道平面与地球赤道的平面夹角为68.5°,绕地球一圈需要114min。卫星质量为173kg,用20.009MHz的频率播放“东方红”乐曲。

原本对前苏联很崇敬的科学家们深有感慨。当年积极提倡搞人造卫星的地球物理所所长赵九章先生说,“靠天,靠地,靠不住!发展宇航科学主要靠我们自己的力量。

在前苏联虽然没有达到考察卫星研制工作的目的,但苏联先进的工业和科技还是使中国的科学家们开了眼界。他们对比苏联和中国情况,意识到发射人造卫星是一项技术复杂、综合性很强的大工程,需要有较高的科学技术水平和强大的工业基础作后盾。代表团在总结中写到,发射人造地球卫星中国尚未具备条件,应根据实际情况,先从火箭探空搞起。同时,应立足国内,走自力更生的道路。

1959年1月21日,主持领导卫星研制工作的张劲夫向科学院传达了的指示,“卫星明后年不放,与国力不相称”。“卫星还是要搞,但是要推后一点”。根据中央的方针,张劲夫提出“就汤下面”,因国家经济困难,暂停卫星研制工作,集中力量先搞探空火箭。

“651”任务

由于缩短了战线,中国很快在探空火箭研制方面有了突破性进展。1960年2月,中国试验型液体探空火箭首次发射成功。此后,各种不同用途的探空火箭相继上天,有气象火箭、生物火箭等。1964年6月,中国自行设计的第一枚中近程火箭发射成功;10月,爆炸成功了中国第一颗。此时,中国在卫星能源、卫星温度控制、卫星结构、卫星测试设备等方面都取得了单项预研成果。此时中国的科学家们觉得发卫星可以提上日程了。

1964年12月全国三届人大会议期间,当年积极倡导中国要搞人造卫星的赵九章,提笔上书周恩来总理,建议开展人造卫星的研制工作。与此同时,知名科学家钱学森也上书中央,建议加速发展人造卫星。

1965年5月,周恩来总理指示科学院拿出第一颗人造卫星具体方案。负责卫星总体组的钱骥,带领年轻的科技工作者很快便拿出了初步方案,归纳为三张图一张表:用红蓝铅笔画成的卫星外形图、结构布局图、卫星运行星下点轨迹图和主要技术参数及分系统组成表。

该方案先后拿到文津街3号科学院院部和国防科委大楼,分别向张劲夫等科学院领导和罗舜初等国防科委领导作了详细汇报,并由钱骥等直接向周恩来总理作了汇报。当周总理知道钱骥姓钱时风趣地说:我们的卫星总设计师也是姓钱啊,我们搞尖端的,原子、导弹和卫星,都离不开“钱”啊!

1965年8月,周总理主持中央专委会议,原则批准了中国科学院《关于发展我国人造卫星工作规划方案建议》确定将人造卫星研制列为国家尖端技术发展的一项重大任务。并确定整个卫星工程由国防科委负责组织协调,卫星本体和地面检测系统由中国科学院负责,运载火箭由七机部、卫星发射场由国防科委试验基地负责建设。因是一月份正式提出建议,国家将人造地球卫星工程的代号定名为“651”任务。全国的人、财、物遇到“651”均开绿灯,这样中国卫星就从全面规划阶段,进入工程研制阶段。

10年4月24日,“长征”一号运载火箭成功的将我国第一颗人造卫星“东方红”一号送入太空重量上要超苏美。

1965年10月20日至11月30日,科学院受国防科委委托,在北京召开了中国第一颗人造卫星总体方案论证会,历时42天。会上,钱骥报告了中国第一颗人造卫星总体方案。与会的军、民包括海、陆、空方面的120多位专家,对发射人造卫星的目的、任务进行了反复论证。

这个代号为“651”的会议上确定:中国第一颗人造卫星为科学探测性质的试验卫星,其任务是为发展中国的对地观测、通信广播、气象等各种应用卫星取得基本经验和设计数据;发射时间定在10年;成功的标志是“上得去、抓得注听得见、看得见。”

会上较为保密论证的一个议题,便是中国第一颗卫星重量如何确定。这一问题涉及到导弹武器的水平。因为早期发射卫星的运载工具,都是在导弹的基础上发展起来的,放卫星实质上是展现一个国家的军事实力。虽然中国卫星工程起步较晚,但专家们都认为中国的起点要高,第一颗卫星在重量、技术上要做到比美、苏第一颗卫星先进。苏联第一个卫星重量83.6公斤,美国的第一颗卫星只有8.2公斤。会议最后确定中国第一颗卫星为100公斤左右(实际上,最后上天时是173公斤)。

铝板琴奏出“东方红”

30年前上街游行的人们可能已忘记了当时的庆祝场面,但卫星从太空中发出的“东方红”悠扬乐音却长久地留在了人们的记忆中。提起“东方红一号”的命名、乐音的诞生,不能不谈到中国航天事业中一位默默无闻的铺路人--何正华。

苏联第一颗人造卫星的呼叫信号是嘀嘀哒哒的电,遥测信号是间断的。中国的卫星信号应该是什么样的?卫星总体组的组长何正华认为,中国应该超过苏联,发射一个连续的信号,且这个信号要有中国特色,全球公认。当时中央人民广播电台对外呼号是“东方红”乐曲,某种意义上“东方红”也成了“红色中国”的象征。出于对的崇敬,何正华亦提出了卫星命名为“东方红一号”的建议。这些提议在“651”会议上得到了专家的赞同。1966年5月,经国防科工委、中国科学院、七机部负责人罗舜初、张劲夫、裴丽生、钱学森等共同商定,将中国第一颗人造卫星取名为“东方红一号”。1967年初正式确定中国第一颗人造卫星要播送《东方红》音乐,让全球人民都能听到中国卫星的声音。

由于当时正处于“文化大革命”的中,播送“东方红”乐音不仅是科研任务,也成了责任重大的政治任务。如果卫星上天后,变调或不响,按“上纲上线”的说法,无疑是重大的政治问题,研制者就有可能被打入十八层地狱。在沉重的思想负担和精神压力下,何正华和乐音装置的主要设计者刘承熙冒着政治风险,开始了他们技术上的探索,解决了乐音错乱和乐音变调等一系列问题。“东方红”乐音最后用电子音乐,用线路模拟铝板琴声奏出。乐音装置的第一批正样产品,是1968年上半年在重庆一家工厂生产的,由于当时生产秩序极不正常,产品中许多元件出现虚焊现象。最后上天的产品是由上海科学仪器厂重新生产的。

红海洋中的“一块绿洲”

中国第一颗人造卫星工程的整个研制工作,大部分都是在“文化大革命”最的年月里进行的。那时席卷全国的“红色风暴”冲击到承担卫星工程任务的每一个单位。1967年初,中国科学院和七机部及下属单位均被“群众组织”夺权,卫星设计院的原来的领导都“靠边站”了,很多的科学家当时被定为“学术权威”、“特务”、“牛鬼蛇神”遭到批斗。即使普通的科技人员,也有不少亲属和社会关系在运动中受到冲击和株连。卫星的研制工作与“革命”发生了冲突。

当时的“革命”要求大家手捧“宝书”,口念语录,心地虔诚地表忠献忠。卫星研制只能等参加完“革命”才能去做,否则就会被扣上“不突出政治”的帽子。科学家被批判时,科技业务骨干还要参与陪“斗”。武斗不断,交通受阻,器材供应不上,卫星研制事业已面临夭折的危险。

在这种情况下,1967年初,周恩来总理与聂荣臻副总理取了一系列措施,宣布:组建中国空间技术研究院,钱学森任院长,编入军队序列,不开展“文化大革命”的“四大”(即大鸣、大放、大字报、大辩论)。空间技术研究院从许多单位抽调出精兵良将,把分散在各部门的研究力量集中起来,实行统一领导,使科研生产照常进行,保证了中国第一颗卫星的如期发射。

在空间技术研究院建院之初,研制卫星所需的物质条件十分缺乏,如测试设备少,试验设备不齐,加工设备不足等等。卫星制造厂是由科学仪器厂转产的,在人员、技术、设备和管理方面都面临很多困难。铆接,是卫星制造中必不可少的一道工序。可当时卫星厂未干过,在卫星的初样和试验阶断,没有铆枪,更没有固定工件的桁架,工人们就靠一把小锤,用自己的身体当桁架,将铆钉一个个敲上去。就是在这样的条件下,卫星厂解决了铆接、阳极化电抛光、光亮铝件大面积镀金、铝件热处理等多项工艺问题。

为了检验设计的正确性与合理性,“东方红一号”卫星从元件、材料,到单机分系统以至整星都要在地面进行多种环境模拟试验。发射场预定发射卫星的时间气候寒冷,而卫星厂又没有符合要求的试验场地,“热控试样星”的试验是1968年的夏季于海军后勤部的一个冷库中进行的。很多的困难都是靠科技人员因陋就简、土法上马、群策群力解决的。卫星上天后,许多国际友人来空间技术研究院参观卫星,当时的环境条件让参观者大为感叹:“东方红一号”能诞生,是个奇迹!

难忘4.24

10年4月1日,装载着两颗“东方红一号”卫星、一枚“长征一号”运载火箭的专门列车到达中国西北酒泉卫星发射中心。

4月份的西北戈壁滩上,白天也要穿棉衣,到夜间,裹着皮大衣也感到寒冷。在离地面30多米高的龙门塔工作平台上,科技人员不分白天黑夜,排除一切故障,一次次地测试。

10年4月24日3点50分,周恩来总理电话告知国防科委副主任罗舜初:已经批准这次发射,希望大家鼓足干劲,过细地做工作,要一次成功,为祖国争光。

21时35分,卫星发射时刻终于到来了。“东方红一号”随“长征一号”运载火箭在发动机的轰鸣中离开了发射台。21时48分,星箭分离,卫星入轨。21时50分,国家广播事业局报告,收到中国第一颗卫星播送的“东方红”乐音,声音清晰宏亮。

10年4月25日18点,新华社授权向全世界宣布:10年4月24日,中国成功地发射了第一颗人造卫星,卫星运行轨道的近地点高度439公里,远地点高度2384公里,轨道平面与地球赤道平面夹角68.5度,绕地球一圈114分钟。卫星重173公斤,用20.009兆周的频律播送“东方红”乐曲。

新闻公报刚发表,顷刻间,首都北京灯火通明,锣鼓声四起,鞭炮齐放,人们带着“”时代特有的狂热,涌上街头高呼着“万岁”、“庆祝文化大革命的伟大胜利”、“无产阶级文化大革命胜利万岁!……

然而,为中国的第一颗人造卫星倾注了全部心血的赵九章先生却未能等到这一刻。无端受诬陷迫害的他,早在一年半以前已经含冤去世。不少的科学家是在“牛棚”中听到“东方红”乐音的。

“东方红一号”卫星升空后,星上各种仪器实际工作的时间远远超过了设计要求,“东方红”乐音装置和短波发射机连续工作了28天,取得了大量工程遥测参数,为后来卫星设计和研制工作提供了宝贵的依据和经验。

“东方红一号”的发射成功,为中国航天技术的发展打下了极为坚实的根基,带动了中国航天工业的兴起,使中国的航天技术与世界航天技术前沿保持同步,标志着中国进入了航天时代。

土壤中氡浓度的测定

parameter

[pE5rAmitE]

n.

参数, 参量, <口>起限定作用的因素

parameter

pa.ram.e.ter

AHD:[p…-r?m“?-t…r]

D.J.[p*6r#mit*]

K.K.[p*6r#m!t+]

n.(名词)

Mathematics

数学

A constant in an equation that varies in other equations of the same general form, especially such a constant in the equation of a curve or surface that can be varied to represent a family of curves or surfaces.

参数,参量:在相同一般类型的等式中取值变化的等式中的常数或常量,尤其是曲线方程和平面方程中能代表一类曲线或平面的常量

One of a set of independent variables that express the coordinates of a point.

变量,参数:一组代表与之对应的点的独立变量之一

One of a set of measurable factors, such as temperature and pressure, that define a system and determine its behior and are varied in an experiment.

要素,测量元素之一:一组可测量的确定某一系统并决定该系统的状况且在实验中是变化的因素之一,例如温度和压力

Usage Problem A factor that restricts what is possible or what results:

用法疑难 限制因素:限定可能性和结果的因素:

“all the parameters of shelter—where people will live, what mode of housing they will choose, and how they will pay for it”(New York)

“住宿的所有限制因素——人们住在哪里、他们将选择什么样的住房式样以及他们如何付房钱”(纽约)

A factor that determines a range of variations; a boundary:

决定变数范围的要素,范围,界限:决定变化范围的因素;限度:

an experimental school that keeps expanding the parameters of its curriculum.

一所不断扩展课程范围的实验学校

Statistics A quantity, such as a mean, that is calculated from data and describes a population.

统计学 母数:一种如平均数等从数据中计算出来的用来描述总体的数值

Usage Problem A distinguishing characteristic or feature.

用法疑难 特色,特征:区别于其它事物的特点或性质

New Latin parametrum [a line through the focus and parallel to the directrix of a conic]

现代拉丁语 parametrum [通过焦点并与圆锥曲线的准轴线平行的直线]

Greek para- [beside] * see para- 1

希腊语 para- [在旁边] *参见 para-1

Greek metron [measure] * see -meter

希腊语 metron [测量] *参见 -meter

par”amet“ric

AHD:[p?r”…-m?t“r?k] 或 par”a.met“ri.cal (形容词)

par”amet“rically

adv.(副词)

In recent years parameter has become the archetype for the borrowing of scientific terms into general usage and as such has occasioned a good deal of skeptical comment. Some of its new uses can be justified as useful extensions of the technical senses of the word. For example, the provisions of a zoning ordinance that limit the height or density of new construction can be reasonably likened to mathematical parameters that establish the limits of other variables. Therefore one can properly say The zoning commission announced new planning parameters for the historic Lamping district of the city. But other uses suggest that the writer has not understood the technical sense and has chosen it primarily as a way of injecting an aura of scientific precision into what would otherwise be a pedestrian communication. Thus there is no semantic justification for using parameter as a general substitute for characteristic, as in The Judeo-Christian ethic is one of the important parameters of Western culture, an example found unacceptable by 80 percent of the Usage Panel. · Some of the difficulties with nontechnical use of parameter ear to arise from its resemblance to the word perimeter, with which it shares the sense “limit,” though the two words differ in their precise meaning. This confusion douless explains the use of parameter in a sentence such as U.S. forces report that the parameters of the mine area in the Gulf are fairly well established, where the word perimeter would he expressed the intended sense more exactly. This example of a use of parameter was unacceptable to 61 percent of the Usage Panel.

近些年来,parameter 已成为一个从科技术语借用到普通用法的原形, 同时也引起了大量的怀疑批评。它的某些新用法可被看作是该词科技含义的有益扩展。例如,某一区域性法规中关于新建筑高度或密度的条文能被合理地与制定其它变量限度的数学参量进行比较。因而,人们当然可以说地区委员会公布了历史上该城有名的灯区新方案 。 但其它的一些用法说明说话人还没有理解它的科技含义,并且选用了这个词主要作为给将是普通交流的东西注入一些精确的科学气息的途径。因此,用parameter 作为 characteristic 的一般等价词毫无语义上的合理性, 如在犹太教与基督教的道德规范是西方文化中重要的限制因素 , 是80%的用法小组成员不接受的例子。Parameter 的非科技运用中的一些难点是由于它与 perimeter 都有“限制”的含义造成的, 尽管两个词的确切含义是不相同的。这种混淆无疑解释了parameter 在例如 美军报告说,海湾地雷区的环形防线设置得相当不错 的句子中的运用, 这里perimeter 可能会更确切地表达这种引申含义。 61%的用法小组成员不接受这个运用parameter 的例子

parameter

[pE5rAmItE(r)]

n.

参数

parameter

[pE5rAmitE]

n.

数参数[量, 项, 词]; 变数, 特性; 补助变数

(结晶体的)标轴; 半晶轴

(根据基底时间, 劳动力, 工具, 管理等)工业生产预测法

[废]天通径

parameter-transformation

n.

参数变换

parameterized

adj.

参数化的

acceleration parameter

加速参数

action parameter

行动参数

activation parameter

活化参量[参数]

actual parameter

实在参数

address parameter

地址参数

adjustable parameter

可调参量[参数]

admissible parameter

容许参数

admittance parameter

导纳参数

affine parameter

仿射参数

air parameter

空气(环境)参数

analytic parameter

解析参数[参变量]

antenna parameter

天线参数

arbitrary parameter

任意参数

assembly parameter

汇编参数

asymmetry parameter

非对称参数

atomic parameter

原子参量

autonomous parameter

自发参数

auxiliary inductive parameter (AIP)

诱导参数

basic system parameter

基本系统参数

bioassay parameter

生物测定参数

biochemical parameter

生化参数

biological parameter

生物参数

bunching parameter

群聚参数

buoyancy parameter

浮力参数

canonical parameter

典范参数

characteristic parameter

特性参数

characteristic viscoelastic parameter

粘弹性特征参数

charge control parameter

电荷控制参数

chromatographic parameter

色谱参数

circuit parameters

电路参数

coding parameter

编码参数

cohesive energy density parameter

内聚能密度参数

collision parameter

碰撞参数

colorimetric parameter

色度参数

commutating parameter

换向[整流]参数

complex parameter

复参数

compressibility parameter

可压缩性参数

conduction parameter

传导参数

conformal parameters

保形参数

conjugate parameters

共轭参数[参量], 共轭参变量

conjugate distance parameter

共轭距离参量

constant parameter

恒定参数

continuous parameter

连续参数

control(ling) parameter

调节[控制]参数

controlled parameter

受控参数

copolymerization parameter

共聚参数

correlation parameter

相关参数

cost parameter

价值指标

cost parameters

成本参数

coupling parameter

耦合参数

critical parameter

临界参数

critical parameter of flow

临界流动参数

damage parameter

破坏参数

damping parameter

阻尼[衰减]参数

decoupling parameter

去耦(合)参数

deformation parameter

畸变参量, 形变参数

demand parameter

需求指标

demographic parameter

人口参数

design parameter

设计参数

device parameter

(晶体管)器件参数

differential parameter

微分参数

digit layout parameter

数位配置参数

dimensionless parameter

无维参数, 无因次[无量纲]参数

direction parameter

方向 参数

discrete time parameter

离散时间参数

discriminant parameter

判别参数

dispersion parameter

冶分散度参数

distribution parameter

分布参数

drag parameter

阻力参数

dynamic parameter

动态参数

effective aspect ratio parameter

有效伸长率, 有效展弦比参数

effective dispersion parameter

有效扩散[分散]参数

electric(al) parameter

电参数

electrical parameters of a television system

电视系统的电参数

electrical operating parameter

电操作参数

electronic parameter

电子参量

engine parameter

发动机参数

environmental parameter

环境参数

epistatic parameter

上位参量

equivalent parameters

等效[等价]参数

essential parameter

基本[本质]参数

exposure parameter

暴露[曝光, 接触]参数

extensive parameter

广延参量

external program parameter

外部程序参数

family parameter

族的参数

first differential parameter

第一微分参数

fission parameter

裂变参量

fissionability parameter

可裂变性[度]参数

flow parameter

气流参数

formal parameter

形式参数

four-pole parameter

四极参数

frequency parameter

倍频参数

functional parameter

功能参数

fundamental performance parameter

基本性能参数

fusion parameter

熔解参数

gain parameter

增益参数

general circuit parameter

一般电路参数

geodesic parameter

测地参数

geometric parameter

几何参数

grity parameter

重力参数

growth parameters

生长参数

hinge-moment parameter

铰接力矩参数

hybrid parameter

杂系[混合]参数

image parameter

图象[镜象]参数

impact parameter

碰撞参数

implicit parameter

隐参数

incrementation parameter

增量参数

inertial parameter

惯性参数

initial parameters

最初参数

input parameter

输 入参数

intensive parameter

强度参数

interception parameter

拦截参数(集尘)

isoclinic parameter

等斜参数

isolation parameters

隔离参数

isothermal parameters

等温参数

items parameters

项目的参数

kinetic parameter

动力参数

lattice parameter

晶格[点阵]参数

level parameter

能级[校平]参数

lift-curve-slope parameter

升力曲线斜牵参数

line parameters

线路参数

linear electrical parameters

线性电参数

linkage parameter

杆系参数

local canonical parameter

局部典范参数

location parameter

定位[测定]参数

long-range order parameter

长程序参数

loop parameter

循环参数

low-frequency impedance parameter

低频阻抗参数

lumped parameter

集总参量

main parameter

主要参数

major parameter

主要参数

Malthusian parameter

马尔萨斯参数

manufacturing parameter

生产[工艺制造]参数

mass parameter

质量参数

mean parameter

平均参数

mesh parameter

网格参数

meteorological parameter

气象参数

minor parameter

次要参数

misfit parameter

错配参数

mismatch parameter

失配参数

mixed differential parameter

混合微分参数

monitoring parameter

监测参数

natural parameter

特性[自然]参数

nigational parameter

导航参数

nephelauxetic parameter

电子云重排参数

non-dimensional parameter

无量纲[无因次]参数

non-ideality parameter

非理想性参数

nonlinear parameter

非线性参数

normalized parameter

归一化参量

normalizing parameter

标准化参数

nuclear parameters

核参数

nuisance parameters

多余参量

offset parameter

补偿参数

open circuit parameter

开路参数

open-wire parameter

明线参数

operation parameter

使用参数

optical parameter

光参数

optimal parameter

最佳指标[参数]

optimum relaxation parameter

最优松弛因子

order parameter

有序参数

output parameter

输出参数

parasitic parameter

寄生参数

performance parameter

性能参数

physico-chemical parameter

物化参数

pneumatic parameter

气压参数

policy parameter

政策参数

population parameter

总数, 全量, 全参数, 总量, 人口参数

portfolios parameters

资产组成参数

position parameter

位(置)参量

preset parameter

预定[固定]参数

probabilistic parameter

或然性参数

procedure parameter

过程参数

program parameter

程序参数

program-generated parameter

程序生成参数

quantitative parameter

定量参数

random parameter

随机参数

real parameter

实参数

reduced parameters

折合[简约]参数

regular parameter

正则参数

relative parameter

相对参数

retention parameter

保留参数

retry parameter

重试[复算]参数

rheological parameter

流变参数

roughness parameter

起伏[粗略]参数

running parameter

工作[变化]参数

saturation parameter

饱和参量

scalar parameter

标量参数

scale parameter

尺度参数

scattering parameter

散射参数

selection parameter

选择参数

self-purification parameter

自净参数

semilumped parameter

半集中参数

separation parameter

分离参数

sequential parameters

序列参数

series-distributed parameter

串联分布参数

servo parameter

随动[跟踪, 伺服]系统参数

shape parameter

形状参量[系数, 参数]; 谱轮廓参量

short-range order parameter

短程序参数

similarity parameters

相似参数

slmple formal parameter

简单形式参数

solubility parameter

溶解参数

solvent parameter

溶剂参数

source parameters

离子源参数

space charge parameter

空间电荷参量

spacing parameter

间距参数

spreading parameter

扩展[散射]参数

stability parameter

稳定性参数

stagnation parameters

滞止参数

state parameter

态参量

static parameter

静态参数

statistical parameter

统计参数

steadiness parameter

稳定参数

steam parameter

蒸汽参数

straggling parameter

离散[偏差, 误差]参数

stray parameter

杂散[补充]参数; 随机变量; 寄生参数

string parameter

串参数

structural parameter

结构参数

superfluous parameter

多余参数

symmetric parameter

对称参数

system parameter

系统参数

technical parameter

技术参数

technological parameter

工艺参数

telemetry parameter

遥测参数

television transmission parameters

电视(信号)传输参数

terminal parameter

终端参数

thermal sensitive parameter

热敏参数

thermal shock parameter

热震参数

time-bias parameter

时间偏向参数

time-varying parameters

时变参数

transformation parameter

变换参数

transistor parameter

晶体管参数

transmission-line parameters

传输线参数

tube parameter

电子管参数

two-phase flow parameter

二相流参数

uniformizing parameter

单值化参数

unknown parameter

未知参数

value parameter

值参数

valve parameter

电子管参数

variable parameter

可变参量

varying parameter

可变参数

video parameter

[电视](信号)参数

wastewater parameter

废水(治理)参数

water quality parameter

水质参数

weform parameter

波形参数

we-reflection parameters

(声)波反射参数

width parameter

宽度参数

working parameter

工作[运行]参数

X-ray lattice parameters X

射线晶格参数

parameter of accumulation of freight cars

货车集结参数

parameter of aratus

设备参数

parameter of city resonator

空腔谐振器参数

parameter of consistency

相容性参数

parameter of elliptic integral

椭圆积分的参数

parameter of engine cycle

柴油机的循环参数

parameter of microwe circuit

微波电路参数

parameter

来自现代拉丁语parametrum<希腊语para-在旁+metron尺,测度

中国有什么特殊天气?(不要找寒潮,台风,沙尘暴,梅雨等地理书有的)

土壤中氡浓度测定的关键是如何集土壤中的空气。土壤中氡气的浓度一般大于数百Bq/m3,这样高的氡浓度的测定可以用电离室法、静电收集法、闪烁瓶法、金硅面垒型探测器等方法进行测定。对测试仪器性能指标要求是:工作条件温度-10~40℃;相对湿度≤90%;不确定度≤20%;探测下限≤400Bq/m3。

测量区域范围应与工程地质勘察范围相同,在工程地质勘察范围内布点时应以10m间距作网格,各网格点即为测试点(当遇较大石块时可偏离±2m),但布点数不应少于16个。布点位置应覆盖基础工程范围。

在每个测试点应用专用钢钎打孔。孔的直径宜为20~40mm,孔的深度宜为500~800mm。成孔后,应使用头部有气孔的特制取样器,插入打好的孔中,取样器在靠近地表处应进行密闭,避免大气渗入孔中,然后进行抽气。正式现场取样测试前,应通过一系列不同抽气次数的实验,确定最佳抽气次数。

所集土壤间隙中的空气试样,宜用静电收集法、电离室法或闪烁瓶法、金硅面垒型探测器等测定现场土壤氡浓度。

取样测试时间宜在8∶00~18∶00。现场取样测试工作不应在雨天进行,如遇雨天,应在雨后进行。

现场测试应有记录,记录内容包括:测试点布设图,成孔点土壤类别,现场地表状况描述,测试前24h以内工程地点的气象状况等。

地表土壤氡浓度测试报告的内容应包括:取样测试过程描述、测试方法、土壤氡浓度测试结果等。

土壤中氡的测定方法很多,前面介绍的大部分方法都可以用于土壤中氡浓度的测定,只是各种方法的样方式有所不同,如径迹刻蚀法、活性炭盒法是通过挖坑的方式来集试样等。国家标准GB50325—2001《民用建筑工程室内环境污染控制规范》中用的静电收集法、闪烁瓶法在前面已经介绍,本节主要介绍电离室法和α聚集器法。需要特别指出的是由于土壤中的氡浓度一般较高,且湿度较大,探测器的污染问题较为突出。在进行方法选择时应考虑这一因素。

66.4.2.1 电离室法

方法提要

电离室法是稳定性最好的方法,被许多标准实验室作为基本方法,按样方式有充气式和流气式两种,按工作状态又可分为电流式和脉冲式两种。电流式电离室是记录由大量辐射粒子所引起的总电离效应,主要用于测量对时间的平均效应。脉冲式电离室是记录单个粒子的,主要用于重带电粒子的测量。充气式电离室(充气式电流电离室和充气式脉冲电离室)常用于标准实验室监测氡浓度,如国际基准镭源的保持者美国NIST所用的充气式脉冲电离室测量系统。土壤中氡浓度测量常用流气式电离室(流气式脉冲电离室和流气式电流电离室),流气式脉冲电离室在66.4.1.2中连续氡测量仪法中已经介绍,这里介绍流气式电流电离室。

基本原理是含氡气体进入电离室后,氡及其子体放出的α粒子使空气电离,电离室的中央电极积累的正电荷使静电计的中央石英丝带电;在外电场的作用下,石英丝发生偏转,其偏转速度与其上的电荷量成正比,也就是与氡浓度成正比,测出偏转速度就可知道氡的浓度。检出限10~40Bq/m3。

仪器装置

图66.14 FD-105K测氡仪示意图

仪器由偏转式静电计、气体电离室和操作台3部分组成,其构造如图66.14所示。偏转式静电计由石英丝架、转动衬套、转动调整螺丝、电刀、绝缘琥珀和中心电极等构成。偏转式静电计壳内有一固定的隔板,隔板用于固定石英丝架、电刀和绝缘琥珀等。偏转式静电计的主要部件是石英丝系,石英丝系由悬丝、臂丝、指示丝组成。石英丝除吊环外,表面涂有金属铂,它的悬丝上端的绝缘杆,用紧定螺钉固定在石英丝架顶盖上的调整转动螺丝下端的插孔内,悬丝下端的金属杆也用紧定螺钉固定在中心电极上端的插孔内,石英丝的臂丝正常时应平行于两对正负电刀之间,且上下距离适中,指示丝在目镜中的位置竖直端正,调整好时仪器的机械零点、电零点应一致指示零。气体电离室由电离室外壳、绝缘体保护环、收集电极、接触电极组成。接触电极固定在绝缘保护环的绝缘琥珀上,通过绝缘保护环同静电计的中心电极相连接。在测量挡下工作时,电离室壳电压应在 100 ~150V。操作台是测氡仪的控制部分,操作台的右侧设有工作开关,可根据工作需要打到相应挡位工作。电源开关用于控制整机供电电源,电源电压为1. 5V。操作台左边有调零电位器和灵敏度电位器,用于调整仪器的电零点和灵敏度。操作台里的电路板主要为仪器提供电源和调整控制。读数显微镜放大倍数为70 倍,用于读取石英丝指示的数据。

分析步骤

将电离室用真空泵抽成负压,然后用真空法将待测试样送入电离室。放置 40min 后,用静电计测量所产生的电离电流,根据刻度系数计算氡浓度。

刻度

应用定期(每年一次)对标准氡室进行刻度,也可以用66.4.1.2中闪烁瓶法的方法校正。

注意事项

1)该方法的优点是方法可靠,直接快速,既可以直接收集空气试样进行测量,也可以使空气不断流过测量装置进行连续测量,在实验室使用可较快地给出氡浓度及其动态变化。缺点是:灵敏度低,不适合低水平测量,设备笨重,不便现场使用;测量时间较长,读数方法原始,要用肉眼观察指示丝的偏转速度。

2)FD-105K测氡仪是20世纪60~70年代的产品,目前已停止生产,但目前地震系统仍在使用,主要用作水中氡的测量。

66.4.2.2 α聚集器法

方法提要

这类仪器通过218Po(RaA)达到测氡的目的,大致分四类:α卡测量(天然α卡法、静电α卡法、带电α卡法),α管测量,α膜测量(氡膜法或α收集膜法)和“RaA”测量(带电瞬时α卡测量)。本节介绍利用静电收集氡衰变的第一代子体RaA作为测量对象,定量测量土壤、空气或水中氡浓度的FD-3017RaA测氡仪。基本原理是当氡射气经干燥器被抽入筒内后,随即开始衰变,并产生新的子体RaA;它在初始形成的瞬间是为带正电的离子,利用它的带电特性,用加电场的方式对它进行收集,使RaA离子在电场作用下被浓集在带负高压的金属收集片上;在经过一段时间加电收集后,取出金属片放入到操作台探测器(金硅面垒型探测器)内测量RaA的α放射性,其强度将与氡浓度成正比,根据刻度系数就可计算出氡浓度。

仪器装置

仪器主要由抽气泵和测量操作台两部分组成,抽泵除了完成抽取地下气体或水样脱气外,还起到贮存收集氡子体的功能。仪器结构见图66.15。

主要性能参数:

探测器,金硅面垒型半导体探测器,"26mm,面积531mm2。

抽气泵体积,最大气体积1.5L,有0.2L、0.5L、1.0L和1.5L四个气挡位。极限探测灵敏度:小于0.37Bq/L。抽气泵密封性能:在0.0933MPa(700mmHg)时,漏气速率<2666Pa/分。本底≤4脉冲/h。

测量步骤

1)连接抽气泵与操作台之间的高压电源线,操作台开机自检5~10次,预热5min左右。

2)设置测量时间2min,再设置高压存在时间2min。

3)用锤子在选定土壤上打孔,然后放入样头,连接好干燥管和样头与抽气泵之间的管子。

4)把收集子体用的金属片放入抽气泵顶部,预抽气0.5L左右排出,正式抽气1.5L后关闭阀门。

5)开高压按钮,等待2min听到报警声后,15s内将金属片从抽气泵顶部移到操作台探测器上。此时,可以排出抽气泵中气体并拔出样头。

6)等待2min测量结束后,读数、记录,然后收金属片,关高压时间设置,再关测量时间设置到off档。

7)计算:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

图66.15 FD-3017RaA测氡仪结构图

式中:CRn为氡浓度,Bq·m-3;NRaA为RaA的α脉冲计数,次;J为换算系数,Bq·m-3·次-1。

刻度

应用定期(每年一次)对标准氡室进行刻度,正常工作过程中每日用固体镭平面源进行校正。

注意事项

1)该仪器的优点是没有探测器污染问题,也不存在氡射气的干扰影响,并且具有较高灵敏度、操作简便、现场可获取结果等。

2)缺点是气量有时难以控制,特别是在黏土、难抽气的地区。

火山喷发是岩浆等喷出物在短时间内从火山口向地表的释放。由于岩浆中含大量挥发分,加之上覆岩层的围压,使这些挥发分溶解在岩浆中无法溢出,当岩浆上升靠近地表时,压力减小,挥发分急剧被释放出来,于是形成火山喷发。火山喷发是一种奇特的地质现象,是地壳运动的一种表现形式,也是地球内部热能在地表的一种最强烈的显示。

编辑本段火山喷发的类型

因岩浆性质、地下岩浆库内压力、火山通道形状、火山喷发环境(陆上或水下)等诸因素的影响,使火山喷发的形式有很大差别,一般有这样一些分类:

裂隙式喷发

岩浆沿着地壳上巨大裂缝溢出地表,称为裂隙式喷发。这类喷发没有强烈的爆炸现象,喷出物多为基性熔浆,冷凝后往往形成覆盖面积广的熔岩台地。如分布于中国西南川、滇、黔三省交界地区的二迭纪峨眉山玄武岩和河北张家口以北的第三纪汉诺坝玄武岩都属裂隙式喷发。现代裂隙式喷发主要分布于大洋底的洋中脊处,在大陆上只有冰岛可见到此类火山喷发活动,故又称为冰岛型火山。

中心式喷发

地下岩浆通过管状火山通道喷出地表,称为中心式喷发。这是现代火山活动的主要形式,又可细分为三种:

(1)宁静式:火山喷发时.只有大量炽热的熔岩从火山口宁静溢出,顺着山坡缓缓流动,好像煮沸了的米汤从饭锅里沸泻出来一样。溢出的以基性熔浆为主,熔浆温度较高,粘度小,易流动。含气体较少,无爆炸现象、夏威夷诸火山为其代表,又称为夏威夷型。这类火山人们可以尽情地欣赏。

(2)爆烈式:火山爆发时,产生猛烈的爆炸,同时喷出大量的气体和火山碎屑物质,喷出的熔浆以中酸性熔浆为主。1902年12月16日,西印度群岛的培雷火山爆发震撼了整个世界。它喷出的岩浆粘稠,同时喷出大量浮石和炽热的火山灰。这次造成26000人死亡的喷发,就属此类,也称培雷型。

(3)中间式: 属于宁静式和爆烈式喷发之间的过渡型.此种类型以中基性熔岩喷发为主。若有爆炸时,爆炸力也不大。可以连续几个月,甚至几年,长期平稳地喷发,并以伴有歇间性的爆发为特征。以靠近意大利西海岸利帕里群岛上的斯特朗博得火山为代表.该火山大约每隔2-3分钟喷发一次,夜间在50公里以外仍可见火山喷发的光焰,故而被誉为“地中海灯塔”。又称斯特朗博利式。有人认为我国黑龙江省的五大连池火山属于这种类型。

(4)熔透式喷发

编辑本段火山喷发的阶段

1、气体的爆炸

在火山喷发的孕育阶段,由于气体出溶和震群的发生,上覆岩石裂隙化程度增高,压力降低,而岩浆体内气体出溶量不断增加,岩浆体积逐渐膨胀,密度减小,内压力增大,当内压力大大超过外部压力时,在上覆岩石的裂隙密度带发生气体的猛烈爆炸,使岩石破碎,并打开火山喷发的通道,首先将碎块喷出,相继而来的就是岩浆的喷发。

2、 喷发柱的形成

气体爆炸之后,气体以极大的喷射力将通道内的岩屑和深部岩浆喷向高空,形成了高大的喷发柱。喷发柱又可分为三个区:

(1)气冲区:它位于喷发柱的下部,相当于整个喷发柱高度的十分之一。因气体从火山口冲出时的速度和力量很大,虽然喷射出来的岩块等物质的密度远远超过大气的密度,但它也会被抛向高空。气冲的速度,在火山通道内上升时逐渐加快,当它喷出地表射向高空时,由于大气的压力和喷气能量的消耗,其速度逐渐减小,被气冲到高空的物质,按其重力大小在不同的高度开始降落。

(2)对流区:位于气冲区的上部,因喷发柱气冲的速度减慢,气柱中的气体向外散射,大气中的气体不断加入,形成了喷发柱内外气体的对流,因此称其为对流区。该区密度大的物质开始下落。密度小于大气的物质,靠大气的浮力继续上升。对流区气柱的高度较大,约占喷发柱总高度的十分之七。

(3)扩散区:位于喷发柱的最顶部,此区喷发柱与高空大气的压力达到基本平衡的状态。喷发柱不断上升,柱内的气体和密度小的物质是沿着水平方向的扩散,故称其为扩散区。被带入高空的火山灰可形成火山灰云,火山灰云能长时间飘流在空中,而对区域性的气候带来很大影响,甚至会造成灾害。此区柱体高度占柱体总高度的十分之二左右。

3. 喷发柱的塌落

喷发柱在上升的过程中,携带着不同粒径和密度的碎屑物,这些碎屑物依着重力的大小,分别在不同高度和不同阶段塌落。决定喷发柱塌落快慢的因素主要有四点:

(1)火山口半径大的,气体冲力小,柱体塌落的就快;

(2)若喷发柱中岩屑含量高,并且粒径和密度大,柱体塌落的就快;

(3)若喷发柱中重复返回空中的固体岩块多,柱体塌落的就快;

(4)喷发柱中若有地表水的加入,可增大柱体的密度,柱体塌落的就快。反之,喷发柱在空中停留时间长,塌落的就慢。

火山喷发并非千遍一律,像夏威夷基拉韦厄火山那样的喷发,事前熔岩已静静地流出,由于熔岩流动缓慢,因而只破坏财产而没有危及生命。而像1883年印尼喀拉喀托火山那样的火山碎屑喷发或蒸气爆炸(或蒸气猛烈爆发),则造成人员的重大伤亡。

在火山喷发过程中,挥发性物质充当了重要的角色,它不仅是火山喷发的产物,更是火山喷发的动力。从岩浆的产生到火山喷发的整个过程,挥发性物质的活动无一不在起作用。

英国科学家认为超级火山喷发可能毁灭人类

英国科学家认为:人类有可能在一次超强度的火山喷发中毁灭。大不列颠公共大学的斯蒂芬·塞尔夫在一次答电子杂志记者问时称,目前还没有任何办法可以阻止这种灾难。当前科学家们正在忙着制定种种抵抗“外部威胁”的战略,比如说如何阻止小行星同地球相撞,却很少去考虑主要危险有可能来自地球内部。

地球物理学家们断言,有些火山的喷发强度要比过去的大好几百倍,而且地球在出现文明前不久曾经历过如此大规模的灾难。

美国地质学家早些时候曾在黄石国家公园发现了不太深的火山灰死层,认为其形成的原因是发生在62万年前的一次超级火山喷发,结果是至今这里还可以见到一些漏斗形的大坑,它们都是那些毁灭性火山喷发后形成的破火山口。

在写给英国自然灾害工作小组的报告中对这种超级火山喷发所造成后果曾有过详细的描述———很大一片地域会被熔岩覆盖,而且撒向大气层的尘土和灰烬将会使不少阳光到达不了地球表面,这无疑会使全球性的气候发生变化。

据纽约大学的迈克尔·拉姆皮诺称,发生于7.4万年前的苏门答腊火山的超强度喷发曾导致全球变冷和北半球3/4的植物毁于一旦。 一部分带电的云层与另一部分带异种电荷的云层,或者是带电的云层对大地之间迅猛的放电。这种迅猛的放电过程产生强烈的闪电并伴随巨大的声音。这就是我们所看到的闪电和雷鸣。

当然,云层之间的放电主要对飞行器有危害,对地面上的建筑物和人、畜没有很大影响,云层对大地的放电,则对建筑物、电子电气设备和人、畜危害甚大。

通常雷击有三种主要形式:其一是带电的云层与大地上某一点之间发生迅猛的放电现象,叫做“直击雷”。其二是带电云层由于静电感应作用,使地面某一范围带上异种电荷。当直击雷发生以后,云层带电迅速消失,而地面某些范围由于散流电阻大,以致出现局部高电压,或者由于直击雷放电过程中,强大的脉冲电流对周围的导线或金属物产生电磁感应发生高电压以致发生闪击的现象,叫做“二次雷”或称“感应雷”。其三是“球形雷”。

编辑本段雷电的威力

雷电电流平均约为20 000A(甚至更大),雷电电压大约是10的10次方伏(人体安全电压为36伏),一次雷电的时候大约为千分之一秒,平均一次雷电发出的功率达200亿千瓦(一般电饭锅的功率低于1000瓦)。

我国建造的世界上最大的水力发电站——三峡水电站,电站的装机总容量为1820万千瓦,只有一次雷电功率的千分之一。

当然雷电的电功率虽然很大,但由于放电时间短,所以闪电电流的电功并不算大,一次约为5555度。

全世界每秒就有100次以上的雷电现象,一年里雷电释放的总电能余约为17.5亿千度。

若一度电的电费为0.30元,全世界一年的雷电价值为5.25万亿元,这是一笔巨大的财富,但由于雷电时间极短,人类还无法捕捉这种电能,目前世界上还没有研究出利用雷电电能的方法。

编辑本段雷电的危害

自然界每年都有几百万次闪电。雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。全球每年因雷击造成人员伤亡、财产损失不计其数。据不完全统计,我国每年因雷击以及雷击负效应造成的人员伤亡达3000~4000人,财产损失在50亿元到100亿元人民币。

雷电灾害所涉及的范围几乎遍布各行各业。现代电子技术的高速发展,带来的负效应之一就是其抗雷击浪涌能力的降低。以大规模集成电路为核心组件的测量、监控、保护、通信、计算机网络等先进电子设备广泛运用于电力、航空、国防、通信、广电、金融、交通、石化、医疗以及其它现代生活的各个领域,以大型CMOS集成元件组成的这些电子设备普遍存在着对暂态过电压、过电流耐受能力较弱的缺点,暂态过电压不仅会造成电子设备产生误操作,也会造成更大的直接经济损失和广泛的社会影响。

雷击造成的危害主要有四种:

(1)直击雷

带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。

(2)雷电波侵入

雷电不直接放电在建筑和设备本身,而是对布放在建筑物外部的线缆放电。线缆上的雷电波或过电压几乎以光速沿着电缆线路扩散,侵入并危及室内电子设备和自动化控制等各个系统。因此,往往在听到雷声之前,我们的电子设备、控制系统等可能已经损坏。

(3)感应过电压

雷击在设备设施或线路的附近发生,或闪电不直接对地放电,只在云层与云层之间发生放电现象。闪电释放电荷,并在电源和数据传输线路及金属管道金属支架上感应生成过电压。

雷击放电于具有避雷设施的建筑物时,雷电波沿着建筑物顶部接闪器(避雷带、避雷线、避雷网或避雷针)、引下线泄放到大地的过程中,会在引下线周围形成强大的瞬变磁场,轻则造成电子设备受到干扰,数据丢失,产生误动作或暂时瘫痪;严重时可引起元器件击穿及电路板烧毁,使整个系统陷于瘫痪。

(4)系统内部操作过电压

因断路器的操作、电力重负荷以及感性负荷的投入和切除、系统短路故障等系统内部状态的变化而使系统参数发生改变,引起的电力系统内部电磁能量转化,从而产生内部过电压,即操作过电压。

操作过电压的幅值虽小,但发生的概率却远远大于雷电感应过电压。实验证明,无论是感应过电压还是内部操作过电压,均为暂态过电压(或称瞬时过电压),最终以电气浪涌的方式危及电子设备,包括破坏印刷电路印制线、元件和绝缘过早老化寿命缩短、破坏数据库或使软件误操作,使一些控制元件失控。

(5)地电位反击

如果雷电直接击中具有避雷装置的建筑物或设施,接地网的地电位会在数微秒之内被抬高数万或数十万伏。高度破坏性的雷电流将从各种装置的接地部分,流向供电系统或各种网络信号系统,或者击穿大地绝缘而流向另一设施的供电系统或各种网络信号系统,从而反击破坏或损害电子设备。同时,在未实行等电位连接的导线回路中,可能诱发高电位而产生火花放电的危险。

编辑本段雷电的好处

雷电交加时,空气中的部分氧气被激变成臭氧。稀薄的臭氧不但不臭,而且还能吸收大部分宇宙射线,使地球表面的生物免遭紫外线过量照射的危害。闪电过程中产生的高温又可杀死大气中90%以上的细菌和微生物,从而使空气变得更加纯净而清新宜人。

据统计,每年地球上空会出现31亿多次闪电,平均每秒钟100次。每次放电,其电能高达10万千瓦时,连世界上最大的电力装置都不能和它相比。另外,大气中还含有78%不能被作物直接吸收的游离氮。闪电时,电流高达10万安培,空气中气体的分子被加热到3万度以上,致使大气中不活泼的氮与氧化合,变成二氧化氮。大雨又将二氧化氮溶解成为稀硝酸,并随雨水降至地面与其他物质化合,变成作物可以直接吸收的氮肥。据测算,全球每年由雷雨而“合成”的氮肥就有20亿吨。这20亿吨从天而降的氮肥,相当于20万个年产1万吨的化肥厂的产量总和!

编辑本段防范技巧

1、单位防雷电六大办法

(1)单位应定期由有资质的专业防雷检测机构检测防雷设施,评估防雷设施是否符合国家规范要求。

(2)单位应设立防范雷电灾害责任人,负责防雷安全工作,建立各项防雷减灾管理规章,落实防雷设施的定期检测,雷雨后的检查和日常的维护。

(3)建设单位在防雷设施的设计和建设时,应根据地质、土壤、气象、环境、被保护物的特点、雷电活动规律等因素综合考虑,用安全可靠、技术先进、经济合理的设计和施工。

(4)应用技术和质量均符合国家标准的防雷设备、器件、器材,避免使用非标准防雷产品和器件。

(5)新增加建设和新增加安装设备应用时对防雷系统进行重新设计和建设。

(6)雷灾发生时应及时向市防雷所上报情况,以便及时处理,避免再次雷击。

2、个人防雷电十大秘诀

(1)应该留在室内,并关好门窗;在室外工作的人应躲入建筑物内。

(2)不宜使用无防雷措施或防雷措施不足的电视、音响等电器,不宜使用水龙头。

(3)切勿接触天线、水管、铁丝网、金属门窗、建筑物外墙,远离电线等带电设备或其它类似金属装置。

(4)减少使用电话和手提电话。

(5)切勿游泳或从事其它水上运动,不宜进行室外球类运动,离开水面以及其它空旷场地,寻找地方躲避。

(6)切勿站立于山顶、楼顶上或其它接近导电性高的物体。

(7)切勿处理开口容器盛载的易燃物品。

(8)在旷野无法躲入有防雷设施的建筑物内时,应远离树木和桅杆。

(9)在空旷场地不宜打伞,不宜把羽毛球、高尔夫球棍等扛在肩上。

(10)不宜开摩托车、骑自行车。

编辑本段雷击的急救

一、主症

皮肤被烧焦,鼓膜或内脏被震裂,心室颤动,心跳停止,呼吸肌麻痹。

二、急救

1.伤者就地平卧,松解衣扣,乳罩、腰带等。

2.立即口对口呼吸和胸外心脏挤压,坚持到病人苏醒为止。

3.手导引或针刺人中,十宣,涌泉,命门等穴。

4.送医院急救。

三、预防

1.雷雨天不在室外走动或大树下避雨,拿掉身上的金属,蹲下防雷击。关闭电视、收音机,拔掉天线。

2.打雷时远离电灯、电源,不靠近柱和墙壁,防引起感应电。

3.在高楼须快入室,在高山快下来,下游泳快上岸。

4.关好门窗、家电、电视机及关电门。

5.在室外者感到头发竖立,皮肤刺痛,肌肉发抖,即有将被闪电击中的危险,应立即卧倒或原地,可避免雷击。

温带气旋是出现在中高纬度地区而中心气压低于四周近似椭圆型的空气涡旋,是影响大范围天气变化的重要天气系统之一。温带气旋的直径平均1000公里,小的也有几百公里,大的可达3000公里或以上。气旋随高空偏西气流向东移动,前部为暖锋,后部为冷锋,两者衔接处的波动南侧为暖区。温带气旋从生成,发展到消亡整个生命史一般为2-6天。同一锋面上有时会接连形成2-5个温带气旋,自西向东依次移动前进,称为“气旋族“。温带气旋对中高纬度地区的天气变化有着重要的影响,多风雨天气,有时伴有暴雨或强对流天气,有时近地面最大风力可达10级以上。

有一部分温带气旋,是热带气旋进入高纬度后,变性而成的。气旋性质已经从原来的暖中心,变为了冷中心。

温带气旋的演变过程,大致可分为初生期、发展期、成熟期(锢囚期)及消亡期。

(1)初生期:

原先地面上有一条静止锋,锋北面是冷空气,锋南面是暖空气,冷空气自东向西运动,暖空气自西向东运动,当冷空气向南插入锋下,暖空气向北抬升,并出现1~2条闭合等压线。

(2)发展期

随着波动的发展,气压进一步下降,闭合等压线增加,冷空气进一步向南推进,冷锋附近出现阵雨或阵雪,暖锋前也出现降水,降水区域扩大。随着气旋的发展,低层扰动逐渐向高层发展,气流作螺旋式的上升,高空低槽也逐步加深。

(3)锢囚期

气旋发展至最盛时期,自地面到500毫巴高度均已成为圆形闭合环流。地面冷锋逐渐追上暖锋,并将地面暖空气上抬,气旋开始锢囚。这时,云雨范围最大,强度加强,风力增大,天气变化最剧烈。但由于地面已为冷空气所占据,成为冷性涡旋,因而气旋开始减弱。

(4)消亡期

气旋发展的最后阶段,暖空气仅残留在地面东南角,低层整个气旋中心辐合加强,地面加压,已变为冷性涡旋,低压中心部位开始被填塞。从地面到500毫巴左右的闭合环流减弱,上升运动已消失,气旋减弱,以至消亡。

这几个阶段,为单个气旋的生命史。从初生到开始消亡平均需2天,长者可达6天,东亚和我国的锋面气旋的发展过程,一般为3天左右,短的约1天,长的约4~5天。